

REVIEW

Biology by design: reduction and synthesis of cellular components and behaviour

Philippe Marguet¹, Frederick Balagadde², Cheemeng Tan³
and Lingchong You^{3,4,*}

¹Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA

²Department of Bioengineering, Stanford University, Stanford, CA 94305-9505, USA

³Department of Biomedical Engineering, Duke University, Durham, NC 27708-0320, USA

⁴Institute for Genome Sciences and Policy, Duke University Medical Center,
Durham, NC 27710, USA

Biological research is experiencing an increasing focus predominantly on the application of knowledge rather than on its generation. Thanks to the increased understanding of cellular systems and technological advances, biologists are more frequently asking not only 'how can I understand the structure and behaviour of this biological system?', but also 'how can I apply that knowledge to generate novel functions in different biological systems or in other contexts?' Active pursuit of the latter has nurtured the emergence of synthetic biology. Here, we discuss the motivation behind, and foundational technologies enabling, the development of this nascent field. We examine some early successes and applications while highlighting the challenges involved. Finally, we consider future directions and mention non-scientific considerations that can influence the field's growth.

Keywords: synthetic biology; gene circuits; biological design; genetic engineering; computational biology; metabolic engineering

1. INTRODUCTION

Imagine you have been charged with building a robot capable of complex and autonomous operations in a dynamic environment. What are the most advantageous characteristics to build into such a machine? To perform work, energy will be needed—renewable energy extracted from the environment is ideal. To respond with meaningful behaviour, information gathering and possessing capabilities will be required. For coordinated operations, communication with other robots is essential. To maintain a long-term function, a self-contained repair or reproduction system will be necessary. To attempt some goals, the robot will need to be a minuscule. To achieve economic feasibility, production costs will have to be low. While all these requirements are significant hurdles to the robotics engineer on a budget, they are feats that life has accomplished time and time again.

Consider one of the simplest forms of life, bacteria. Only a few micrometres long bacteria are capable of many of the above requirements, including, entering minuscule environments, surviving on local nutrients and responding to fluctuations in their environment

with adaptive behaviour (such as chemotaxis (Falke *et al.* 1997), altered nutrient utilization (Jacob & Monod 1961) and temperature-dependent gene expression (Yura & Nakahigashi 1999)). Many bacterial species communicate in order to produce coordinated behaviour (Bassler & Losick 2006) and with doubling times as fast as 20 min, their reproduction capacity is remarkable.

In fact, an engineer building a device on a bacterial 'chassis' would only need to build one functioning prototype, culture overnight in low-cost media and return the next morning to obtain trillions of virtually identical copies. In a sense, this is like programming a minuscule but complex computer that can also reproduce. As appealing as this concept may seem, several fundamental questions arise: what functions are we capable of programming into a living organism? To what extent will these functions be performed predictably and robustly? What is the best way to implement a pre-defined design goal and what challenges and opportunities may arise? These are some of the questions that the burgeoning field of synthetic biology is beginning to address.

Over the past few years, synthetic biologists have generated remarkable systems including: an expanded genetic code in *Escherichia coli* (Wang *et al.* 2001); various logic gates (Dueber *et al.* 2003; Rackham &

*Author and address for correspondence: CIEMAS 2345, 101 Science Drive, Durham, NC 27708, USA (you@duke.edu).

127 Chin 2005a); rewired yeast mating and osmolarity
 128 response circuitry (Park *et al.* 2003); bistable switches
 129 in bacteria (Gardner *et al.* 2000; Isaacs *et al.* 2003);
 130 yeast (Becskei *et al.* 2001) and mammalian cells
 131 (Kramer & Fussenegger 2005); photographic bacteria
 132 (Levskaya *et al.* 2005); genetic and metabolic oscillators
 133 (Elowitz & Leibler 2000; Atkinson *et al.* 2003; Fung
 134 *et al.* 2005); artificial communication in bacteria
 135 (Bulter *et al.* 2004) and yeast (Chen & Weiss 2005);
 136 and many other interesting and useful systems.

137 Although there is a debate about the scope and
 138 boundaries of the field, some advocates supply that
 139 'synthetic biology' is:

140 (A) the design and construction of new biological parts,
 141 devices and systems and (B) the re-design of existing,
 142 natural biological systems for useful purposes.

143 www.syntheticbiology.org,
 144 syntheticbiology.org/FAQ.

145 It is worth examining this definition more closely.
 146 Inherent in part (A) are engineering principles—the
 147 notions of abstraction and hierarchy. One level of
 148 abstraction consists of biological components with
 149 simple albeit well-defined functions, operating under
 150 defined conditions, i.e. *parts*. At a higher level of
 151 abstraction, parts can be combined to form *devices*.
 152 Similarly, devices come together to form *systems* on a
 153 third level of abstraction. The basic premise is that an
 154 individual researcher can work at one of these levels
 155 without necessarily requiring to know the precise
 156 mechanics of operation at another level (Endy 2005).

157 Part (B) states that biology is being redesigned for
 158 'useful purposes'. What purposes you might wonder?
 159 The first purpose may be obvious, and it is the practical
 160 application of biologically modified organisms in
 161 human life. Although our ancestors did not possess
 162 the advanced genetic tools available today, the litany of
 163 domesticated species including fermentation yeasts,
 164 crop grains and silkworms is a testament to the vast
 165 utility of modified living organisms to humans.
 166 However, modification of living organisms by
 167 traditional means, i.e. artificial selection, is an incre-
 168 mental and slow process with limited pay-offs during an
 169 individual's lifetime. For example, it has taken
 170 approximately 15 000 years of domestication by selec-
 171 tive breeding to turn wolves into present-day dogs
 172 (Leonard *et al.* 2002), a process which grouped desirable
 173 genes in particular breeds. Improvements in DNA
 174 synthesis and genomic engineering methods have
 175 enabled the introduction of genetic changes in rela-
 176 tively short time frames. Such technologies will
 177 engender the practical application of modified biolog-
 178 ical systems to new areas, such as therapeutics, renew-
 179 able energies and others. The practical applications of
 180 modified biological systems represent the first useful
 181 purpose behind a redesign.

182 Of course, even possessing large-scale DNA tech-
 183 nology capable of making the changes needed to
 184 produce a guide dog from a wolf is not enough. The
 185 necessary DNA changes have to be known in advance in
 186 order to be made. This is far from the case—especially
 187 for a complex organism like the dog. Comparative
 188 genomics can elucidate the differences between the

189 organisms, but does not yield the full understanding
 190 needed to prospectively say 'If I want to program guide
 191 animal functions into organism X, here are the changes
 192 I will make and this is how those changes work.' In the
 193 venerable words of physicist Richard Feynman, 'what I
 194 cannot create, I do not understand' (Hawking 2001).
 195 The laws of physics and chemistry apply to living
 196 systems just as they apply to non-living things, such as
 197 mechanical engines. Yet, designing and constructing
 198 even simple biological systems remain a major chal-
 199 lenge, whereas mechanical engines can be predictably
 200 engineered. Feynman would conclude that there must
 201 exist fundamental gaps in our understanding of how
 202 biological systems operate. Synthetic biology is explor-
 203 ing these gaps in understanding by attempting to build
 204 and apply such systems.

205 Scientific experiments are run under specific con-
 206 ditions with the hope that the conclusions drawn will be
 207 applicable in a broader context. The creation of
 208 biological systems by using currently accepted (or
 209 debated) principles would test the limitations and
 210 applicability of those principles. Likewise, implemen-
 211 tation of existing genes, proteins and pathways in non-
 212 native settings can help elucidate their functions and
 213 reveal unknown requirements for their operation.
 214 Synthetic biologists therefore aim not only to produce
 215 interesting and useful designs, but also to sim-
 216 taneously develop a greater understanding of biological
 217 components and design principles in general (Sprinzak &
 218 Elowitz 2005). Therefore, the second, and equally
 219 important, purpose of synthetic biology is to gain the
 220 biological insight that arises from testing our knowledge
 221 during the design and implementation process.

2. FOUNDATIONAL TECHNOLOGIES

222 Just as the development of the microscope made the
 223 discovery of cells possible (Dunn & Jones 2004), new
 224 technologies are providing the critical foundation
 225 needed for synthetic biology. Here, we discuss the
 226 following four major advances that have produced
 227 enabling tools for experimentation and analysis in this
 228 regard: DNA synthesis; parts and devices design and
 229 optimization; systems modelling; and observational
 230 capabilities. For an overview of where these tech-
 231 nologies interact with synthetic biology (figure 1).

2.1. DNA synthesis

232 At the core of every living thing, dictating that
 233 organism's characteristics and behaviour is a string of
 234 nucleotide bases—its DNA. To reprogram an organism,
 235 that DNA needs to be altered or supplemented. Until
 236 recently, DNA manipulations were almost exclusively
 237 done in a 'copy, cut and paste' manner using
 238 polymerases, restriction endonucleases and ligases,
 239 respectively. While this enzymatic approach has
 240 produced a wealth of scientific advances, implementing
 241 a complicated biological design by these means is the
 242 literary equivalent of writing a paper using a photo-
 243 copier, scissors and a stick of glue. Recently, however,
 244 biologists have received their metaphorical 'type-
 245 writer'. Tian and colleagues developed a large-scale

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

enabling technologies in synthetic biology

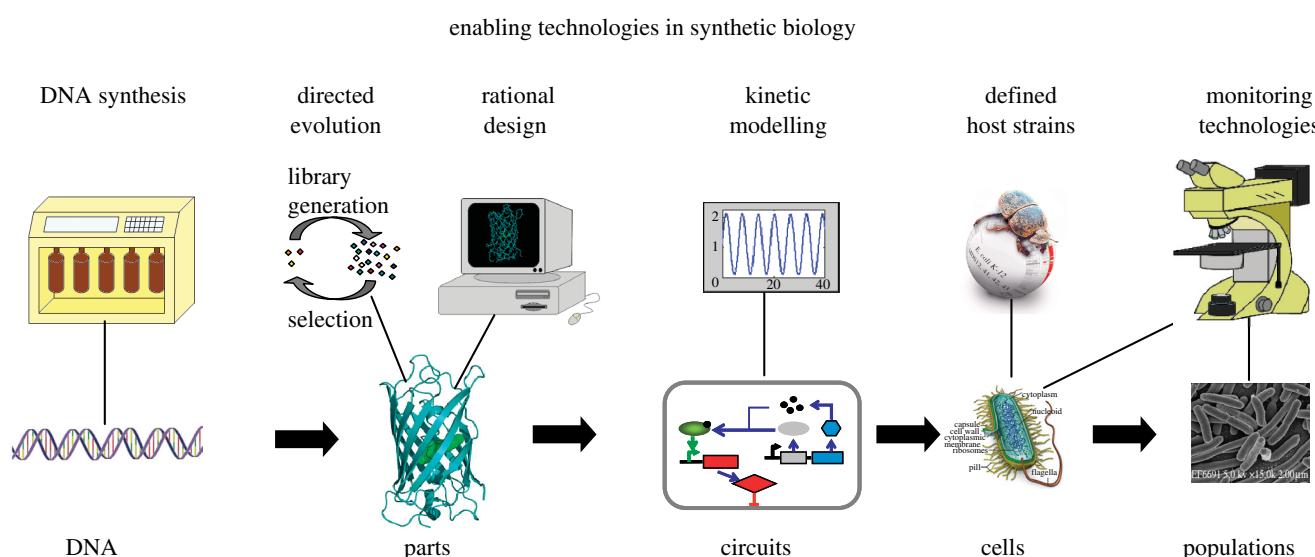


Figure 1. Interplay between engineering tools with a biological hierarchy. In order to simplify biological design, it is valuable to use an abstraction hierarchy. DNA codes for 'parts' that interact with each other to form circuits. The totality of all circuits and structures forms a single cell, which interacts with its neighbours and environment to form a population. At each level, technologies have been developed to assist and enable design. Shown here are the major advances that significantly reduce longstanding design, analysis and production barriers. Together, these technologies are helping to make integrated biological design a reality.

DNA synthesis method by using parallel oligonucleotide synthesis on a programmable microfluidics chip, followed by PCR amplification (Tian *et al.* 2004). In order to reduce the error rate to 1 in 1394 bases, the authors hybridized their 'construction oligos' against complimentary 'selection oligos' and washed away mismatches. Construction oligos were assembled into larger genes using polymerase assembly multiplexing (PAM), an overlap PCR-based method. Using their chip-based technology, the authors simultaneously synthesized and optimized all 21 genes encoding the 30S ribosomal subunit from *E. coli*.

In a different study, Jacobson and co-workers developed a method that can further improve the removal of error-containing DNA fragments (Carr *et al.* 2004). Using this method, which exploits the gel mobility shift apparent when MutS binds a mismatched double-stranded DNA, they were able to obtain an error rate as low as 1 in 10 000 (the average length of a prokaryotic gene is 924 bp, while that of a eukaryotic gene is 1346 bp; Xu *et al.* 2006). By applying these and other technologies, commercial companies are now able to offer large-scale (multi-kilobase and up) DNA synthesis for under \$1, a base with a two- to four-week turnaround time. Whereas these prices do not make a 10 kb construct inexpensive for most researchers, they imply that commercial synthesis has begun to rival the equipment, materials, labour and validation costs incurred by traditional cloning and construction means for select applications. It may be possible to further reduce these costs by 10–100-fold, i.e. 1–10 cents per base, within the next decade by fully automating and streamlining new high-throughput techniques (J. Tian, personal communication).

Total DNA synthesis can be used to alter or improve the sequences being built. In traditional cloning, targeted mutational changes are made only to small

regions (approx. 20 bases) at once. Furthermore, each region altered imposes additional experimental steps. DNA synthesis methods, however, can synthesize an altered sequence with no more effort than that necessary to synthesize a wild-type sequence of the same length. For example, a protein-coding sequence can be matched with regard to codon usage in the host organism where it will be expressed. In this case, the sequence of amino acids in a protein is left unaltered by the modification, but translation efficiency can be improved by using codons whose cognate tRNAs are more abundant. Similarly, the sequence can be altered to remove or create mRNA secondary structures without changing the resulting amino acid sequence. Furthermore, a gene whose sequence is known, but whose DNA is hard to obtain, can be easily synthesized.

2.2. Design and optimization of parts

Q3 One level of abstraction from the DNA synthesis and manipulation is the parts production, which can be accomplished through either rational design or directed evolution. Recently, improved algorithms and processor power have allowed computational design efforts to achieve new milestones in reprogramming the function of many well-characterized natural proteins. In a series of studies integrating both computation and experiments, the Hellinga laboratory succeeded in introducing an allosteric control switch into the proton-ATP pump (Liu *et al.* 2002); retooling sugar-sensing receptors to bind novel ligands, such as lactate, trinitrotoluene (TNT) and serotonin (Looger *et al.* 2003), and converting a receptor into a functional triose phosphate isomerase enzyme (TIM), catalysing a 10⁵–10⁶-fold rate improvement over the uncatalysed reaction (Dwyer *et al.* 2004). Significantly, they even demonstrate that designed parts are active *in vivo* and

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

can be used to produce more complex systems. The TNT receptor and a designed Zn receptor were shown to induce gene expression in response to exogenous ligands when implemented in some of the earlier reported examples of synthetic signalling pathways (Dwyer *et al.* 2003; Looger *et al.* 2003). Likewise, the TIM enzyme was sufficiently active to complement its wild-type version and restore viability under gluconeogenic conditions.

Computational design has also found applications beyond altering the specificity or the enzymatic function. For example, the Baker laboratory has designed a new protein that folds to form a novel structure—matching their modelling predictions (Kuhlman *et al.* 2003). They also apply their computational methods to increase the thermostability of an enzyme by identifying key mutations. When some mutations were applied in concert, the result was a 30-fold increase in half-life at 50°C (Korkegian *et al.* 2005). The examples here illustrate altered specificity, novel functions and structures, improved stability and introduction of allosteric control. They highlight some of the contributions that computational protein design has made for parts generation and improvement. While we have only drawn examples from two research groups, computational protein design is a vast and growing field, with important contributions made by numerous other laboratories (Park *et al.* 2004).

Applying rational design to parts alteration or creation is advantageous, in that it cannot only generate products with defined function, but it can also produce biological insights into how the designed function comes about. However, it requires prior structural knowledge of the part, which is frequently unavailable. Directed evolution is an alternative method that can effectively address this limitation by allowing parts engineering without design. In essence, directed evolution begins with the generation of a library containing many different DNA molecules, often by error-prone DNA replication, DNA shuffling or combinatorial synthesis. The library is then subjected to high-throughput screening or selection methods that maintain a link between genotype and phenotype in order to enrich the molecules that produce the desired function. The process is then iterated to approach a desired endpoint (Arnold 2001; Kolkman & Stemmer 2001; Joyce 2004). A recent example of parts creation by directed evolution is the expansion and alteration of LuxR specificity for acyl-homoserine lactone ligands (Collins *et al.* 2005, 2006). LuxR is a transcriptional activator from the marine bacteria *Vibrio fischeri*, and it is naturally responsive to the signalling molecule 3OC6HSL. Collins *et al.* first employed a screening scheme to identify mutations that broadened the binding specificity of LuxR to other small molecules in the same class as 3OC6HSL (Collins *et al.* 2005). They then used a dual-selection method (Yokobayashi & Arnold 2005) to redirect LuxR specificity to one of those molecules, C10HSL (Collins *et al.* 2006). The result was a new protein that responds to the second chemical, but no longer to the first. These parts may be particularly beneficial to designers desiring multiple channels of simultaneous communication between cells. Directed

evolution can also be applied at other levels of biological hierarchy, for example, to evolve entire gene circuits (Yokobayashi *et al.* 2002).

Rational design and directed evolution should not be viewed as opposing methods, but as alternate ways to produce and optimize parts, each with their own unique strengths and weaknesses. Directed evolution requires a high-throughput way to both screen and select for a desired function and that functional mutants exist in the sequence space sampled. This second constraint becomes less likely as the desired function diverges further from the initial function. On the other hand, while rational design strategies can make multiple changes or large-scale alterations that incorporate scientific knowledge, these strategies are rarely precise enough to finely tune the system behaviour. Furthermore, it is difficult to know if additional optimization is possible when employing rational design. For these reasons, both methods can and should be used in conjunction and will hopefully continue to be applied in unison during the years to come.

Recent years have witnessed increasing interest in using parts based on RNA for intricate control of gene expression (Davidson & Ellington 2005; Isaacs *et al.* 2006). One particular line of research has been largely inspired from metabolite-controlled riboswitches prevalent in nature (Mandal & Breaker 2004; Nudler & Mironov 2004). RNA switches are advantageous in their fast response, broad applicability and chemical nature. RNA switches contain a ligand-binding region, or aptamer domain, that controls the function of an effector domain through binding-induced conformational changes. Strategies for the evolution of RNA aptamers and functional RNAs were developed early on (Ellington & Szostak 1990; Robertson & Joyce 1990; Tuerk & Gold 1990) due to the fact that the same molecule plays both functional and information-encoding roles (i.e. the genotype–phenotype link required for directed evolution schemes is intrinsic to the molecule). This allows the generation of a library directly from the products of a competitive screen in the previous round. Furthermore, the entire selection, amplification and iteration procedure can be economically accomplished *in vitro*. The chemical nature of RNA, with four bases possible at each position, means that a higher percentage of available sample space can be covered while evolving an RNA molecule than a protein of similar length (20 amino acid possibilities per position). Additionally, the interactions within an RNA molecule are largely driven by complementary base pairing. As a result, relatively accurate methods for the secondary structure prediction of RNA have been developed and are widely used (Mathews *et al.* 1999; Zuker 2003). Secondary structure information is valuable, because it can allow a researcher to make rationally guided changes.

In a recent work from the Smolke group (Bayer & Smolke 2005), switches were developed that exposed an antisense stem sequence upon binding a ligand, producing a riboregulator. Ligands, such as theophylline, controlled switches that turned on gene expression, as well as switches that turned off gene expression. These

switches were shown to be tunable by making simple changes to the RNA sequence guided by thermodynamic properties. Multiple switches functioned independently in yeast even when binding similar molecules. Switches such as these may be useful in sensing cellular conditions and could also act as feedback mechanisms for tuning metabolic pathways in response to the depletion or accumulation of reactants, intermediates or products. Gallivan and colleagues demonstrate a synthetic RNA switch that is functional in prokaryotes and can be applied in screening or selection schemes that tie *in vivo* levels of small molecules to a reporter gene or cell survival, respectively (Desai & Gallivan 2004). In this manner, one could screen enzyme libraries for a desired catalytic function. Inversely, if the small chemical is supplied, then a library of riboswitches could be screened for binders that alter gene expression. Suess and colleagues, who first described a rationally designed *in vivo* RNA switch, implement it in such a way that it functions as a logic gate with another ligand, xylose (Suess *et al.* 2004). Perhaps, the best-known form of gene regulation by RNA, however, is the role of interfering RNA (Hannon 2002). Yokoboyashi and colleagues show that it is possible to modulate shRNA activity through the action of a small chemical by fusing the shRNA to an aptamer responding to the chemical (An *et al.* 2006).

Synthetic riboregulators need not be ligand controlled. Collins *et al.* demonstrate a general method to introduce RNA-mediated post-transcriptional regulation into prokaryotic genes (Isaacs *et al.* 2004). They introduced a short sequence between the promoter and ribosome-binding site that when translated into mRNA folds into a hairpin with the adjacent ribosome-binding site, sequestering the site and preventing translation. Translation can be restored by expressing a trans-acting RNA that binds the hairpin and forms a more stable structure, which frees the ribosome-binding site.

These examples demonstrate that the cellular engineer of the future will not be restricted only to simply combine the catalogue of known biological parts, but will also have the tools needed to supplement natural parts with custom make parts for specific applications.

2.3. Modelling-guided circuit engineering

The engineering process usually involves multiple cycles of design, optimization and revision (box 1 and figure 2). This is particularly apparent in the process of constructing gene circuits. As the number of interacting parts and reactions increases, it becomes more difficult to intuitively predict circuit behaviour. Towards these ends, mathematical modelling is a useful design tool, in particular, for systems with complex dynamics, such as bistability and oscillations. The importance of mathematical modelling has been increasingly appreciated, as evidenced by its extensive application in systems biology as a way to decipher 'design principles' of natural biological systems (Asthagiri & Lauffenburger 2000; Tyson *et al.* 2001; Gilman & Arkin 2002; You

2004). In comparison, the utility of modelling in synthetic biology seems even more dominant (Hasty *et al.* 2002; Kaern *et al.* 2003).

Various mathematical formulations can be used to model gene circuits. At the population level, gene circuits can be modelled using ordinary differential equations (ODEs). In an ODE formulation, the dynamics of the interactions within the circuit are deterministic. That is, given the same initial condition and numerical configurations, different rounds of simulations will lead to exactly the same results. In other words, the ODE formulation ignores the randomness intrinsic to cellular processes and is convenient for circuit designs that are thought to be less affected by noise or when the impact of noise is irrelevant. For instance, ODE models have been used to guide experimental efforts to program population dynamics in the temporal domain (You *et al.* 2004; Balagadde *et al.* 2005) or the spatial domain (Basu *et al.* 2004, 2005). Importantly, an ODE model facilitates further sophisticated analyses, such as sensitivity analysis and bifurcation analysis. Such analyses are useful to determine how quantitative or qualitative circuit behaviours will be impacted by changes in circuit parameters; this has been almost a standard practice in engineering of most gene circuits accomplished so far (box 1). For instance, in designing a bistable toggle switch, bifurcation analysis was used to explore how qualitative features of the circuit may depend on reaction parameters (Gardner *et al.* 2000). Results of the analysis were used to guide choice of genetic components (genes, promoters and ribosome-binding sites) and growth conditions to favour a successful implementation of designed circuit function.

In a single cell, however, a gene circuit's dynamics often involve small numbers of interacting molecules. Such small numbers will result in highly noisy dynamics even for expression of a single gene (Elowitz *et al.* 2002; Ozbudak *et al.* 2002). For many gene circuits, the impact of such cellular noise may be critical and needs to be considered. This can be done using stochastic models (Rao *et al.* 2002). Different rounds of simulation using a stochastic model will lead to different results each time, which presumably reflect aspects of noisy dynamics inside a cell. For synthetic biological applications, the key of such analysis is not necessarily to accurately predict the exact noise level at each time point. This is not possible even for the simplest circuits due to the 'extrinsic' noise component for each circuit (Elowitz *et al.* 2002). Rather, it is a way to determine to what extent the designed function can be maintained and, given a certain level of uncertainty or randomness, to what extent additional layers of control can minimize or exploit such variations. For instance, a number of computational studies have been conducted to analyse the potential of cell-cell communication to synchronize intrinsically noisy and unreliable oscillators (Mcmillen *et al.* 2002; Garcia-Ojalvo *et al.* 2004).

Mathematical models, either stochastic or deterministic, can be digitally 'evolved' *in silico* to generate optimal circuit designs that satisfy a particular objective. Francois and Hakim used genetic algorithms

631

632

633 Box 1.

634 A recipe for engineering gene circuits (also see figure 2)

635 Design

636 (i) Determine the design goal

637 For the purposes of this tutorial we will attempt to construct a population of cells that restricts its cell density below that
638 imposed by nutrient limitations (You et al. 2004). The implementation discussed below is a revised version (Balagadde
639 et al. 2005).

640 (ii) Pick suitable host organisms/strains

641 Key characteristics to consider here are: ease of genetic manipulation, growth rate, survivability under the desired
642 conditions, and endogenous machinery you wish to exploit. *E. coli* could be used for this application.

643 (iii) Identify necessary 'parts'

644 Available places to draw from include the literature, genome sequences, colleagues, and the MIT registry
645 (The_BioBricks_Foundation). Recall that: (i) Parts need not be from the host organism. While native parts are likely
646 to function properly, they can lead to crosstalk with endogenous systems. (ii) Parts need not exist; they can be developed by
647 rational design or directed evolution. (iii) The better characterized the parts, the easier your job will be. (iv) It is
648 advantageous to include parts as reporters. In this tutorial we will pick the quorum sensing genes *luxR* and *luxI*, as well as
649 the toxin gene (CcdB) from F plasmid segregation.

650 Modeling

651 (iv) Build a mathematical model

652 Start with the simplest model that can capture the circuit dynamics (for example a simplifying assumption might be to
653 assume a protein's production rate depends on a transcription factor rather than explicitly modeling mRNA production,
654 translation, and decay).655 (v) Explore circuit dynamics *in silico*656 Address questions like: can the network architecture give you the function you want? What parameters are most critical for
657 success? How do circuit dynamics change with parameters?

658 Implementation, testing, and debugging

659 (vi) Determine the DNA implementation of your circuit.

660 In our case we will implement our circuit on a plasmid and need decide on copy number, what promoters, RBSs,
661 transcription terminators, and perhaps degron tags to use. Another choice at this time is to decide if any components need to
662 be expressed together on a polycistronic RNA. In this example, the circuit is implemented in a medium copy number
663 plasmid (p15a origin) which the *luxR* and *luxI* gene are co-expressed by a *P_{lac/ara}* promoter. The CcdB gene is controlled by
664 a *P_{luxI}* promoter. Kanamycin resistance is used as a selection marker.

665 (vii) If modeling indicates that a particular parameter is critical, build multiple versions

666 It is rare for all parameters to be perfectly balanced on the first experimental implementation. Designing multiple circuits
667 at once to sample a critical parameter space can increase the chance for initial success. It may also yield interesting
668 information about whether that particular parameter is truly critical.

669 (viii) Test your circuit and decide whether to retest, revise, or redesign

670 If it works as predicted you can continue to fully characterize it. If not, can you fit your model to explain the behavior that
671 is observed? What parameters may need altering to generate the desired function? At this point you can: (i) redesign the
672 circuit to address critical parameter changes, and perhaps 'fine tune' the circuit function by directed evolution; or (ii) test
673 the circuit in other strains or growth conditions.674 A working design usually requires multiple rounds of iteration of steps listed above, which is often the most time consuming
675 portion of biological design.676 to design gene regulatory networks that exhibited
677 hysteresis or oscillations (Francois & Hakim 2004).
678 Initially, a pool of gene circuits was constructed from
679 basic reactions representing activation, repression and
680 post-translational modification. These circuits were
681 subsequently evolved using numerical simulations to
682 obtain a desired output by repeated rounds of digital
683 'mutations' and functional 'screening'. Several unique
684 designs were generated that satisfy each design goal.
685 These designs could serve as alternatives to consider,
686 model or test during the circuit engineering cycle.687 One of the most exciting aspects of synthetic biology
688 is the multiple avenues being used to address questions.
689 While some researchers may only apply a particular
690 method for a given application, the domain as a whole691 will benefit from the use of these complementary
692 approaches. For example, a simple linear cascade can
693 be implemented using transcriptional regulation or
694 reversible protein modification, both of which are
695 prevalent in nature. Implementation by transcriptional
696 control is appealing, because it is generally easier to
697 stitch multiple DNA elements together. However,
698 multi-component transcriptional cascades can intro-
699 duce a significant time delay, as shown by Hooshangi
700 et al. (2005). In this work, a one-stage cascade reached
701 its half-maximal activation in minutes, whereas a three-
702 stage cascade took several hours. Rosenfeld & Alon
703 found that long transcriptional cascades are rare in the
704 sensory systems of relatively short lived *E. coli* and
705 *Saccharomyces cerevisiae* (Rosenfeld & Alon 2003).

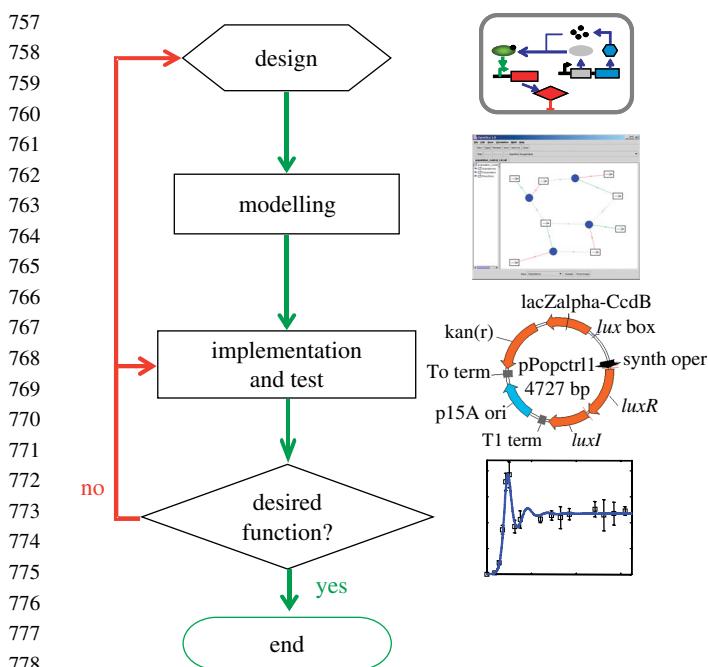


Figure 2. The typical process for engineering gene circuits (see box 1 for more details).

Protein modification-based circuits can offer much faster temporal response (Kholodenko 2006). As the field matures, it is probable that synthetic circuits, like nature, will integrate both DNA and protein regulatory logic in their design. The combination will exploit advantages of each method while mitigating their weaknesses. These choices will require mathematical modelling to ensure that the circuits can perform on the desired time-scale for a particular operation.

In most attempts to engineer gene circuits, mathematical models are often purposefully simplified to capture the qualitative behaviour of the underlying systems. Simplification is beneficial partially due to the limited quantitative characterization of circuit elements, one limitation that the BioBricks project aims to address (The BioBricks Foundation, Registry of Standard Biological Parts.), and partially because simpler models may better reveal key design constraints. The caveat, however, is that a simplified model may fail to capture richer dynamics intrinsic to a circuit. When engineering a population controller, we built a highly simplified kinetic model to capture the essence of the circuit dynamics, including cell growth, signal accumulation, killer protein accumulation and subsequent cell killing. The model predicts that the system will always lead to a stable regulated state, and this prediction was supported by the observations made in batch cultures (You *et al.* 2004). Yet, later, we observed sustained oscillations when cells expressing the circuit were grown in a microchemostat (Balagadde *et al.* 2005). One way to reconcile the experimental and modelling results was to introduce an extra step of regulation in our model, which indeed resulted in sustained oscillations for biologically feasible parameters. We note that still more layers of regulation are involved, further complicating the modelling analysis (figure 3).

2.4. Culturing and monitoring technologies

To determine if a synthetic circuit works as designed, one must be able to test it and observe its dynamics. These tasks have benefited from the rapid development of improved culturing and observational technologies. An ideal method for monitoring cellular dynamics over time should be easy to perform and should not significantly affect the properties being measured. One step towards this ideal has been the engineering of fluorescent protein variants (Giepmans *et al.* 2006). These proteins are genetically encoded and mature to functionality without requiring cofactors. Each variant fluoresces with a specific visible wavelength upon excitation, allowing multiple variants to be discerned in one cell.

Fluorescent proteins can report on the protein levels by directly creating translational fusions or indirectly creating transcriptional fusions. A translational fusion is made by inserting a fluorescent protein into the reading frame of the target protein resulting in the translation of the fluorescent protein and target protein as one molecule. That is, one can tag a target protein with a fluorescent tail. In many cases, this does not significantly affect either protein's function. A transcriptional fusion is made by co-expressing a fluorescent protein and a target protein by placing each behind the same promoter. While this strategy reports on promoter activity, a key determinant of intracellular levels, it fails to capture any post-transcriptional or post-translational regulation, such as the action of regulatory RNAs or proteases. With both transcriptional and translational fusions, fluorescence measurements are non-invasive to live cells, and the process can be automated for long-term measurements. Fluorescent proteins therefore represent an elegant solution for monitoring *in vivo* protein levels. Caution must be exercised with translational fusions, however, because even if the fluorescent tag does not alter the target protein's function *per se*, it may significantly impact its localization. Although many of such cases are unreported, the literature is spotted with examples of mis-localized or mis-transported fluorescent fusion proteins (Roucou *et al.* 2000; Hanson & Ziegler 2004). This is an important issue not only for studies that explore protein trafficking, but also for any system where altered localization will affect function.

A particularly appealing application of fluorescent proteins is to monitor single-cell dynamics in real time through optical microscopy. Single-cell measurements are critical for revealing heterogeneity in gene expression or differences in other phenotypic traits between the cells that are often masked in population-level measurements. In one of the earliest synthetic circuits published, Elowitz & Leibler built a circuit capable of producing oscillations in gene expression, but it was only through the microscopic tracking of individual lineages of bacteria that the oscillations became truly apparent (Elowitz & Leibler 2000). Similar techniques were used to characterize other oscillators implemented later (Atkinson *et al.* 2003; Fung *et al.* 2005). Recently, single-cell measurements have become the workhorse for a series of elegant

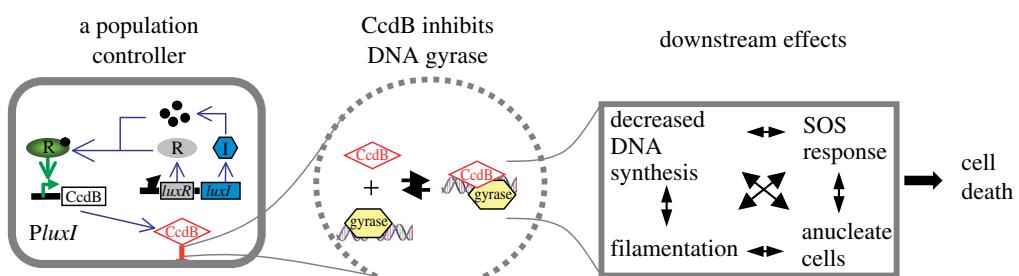
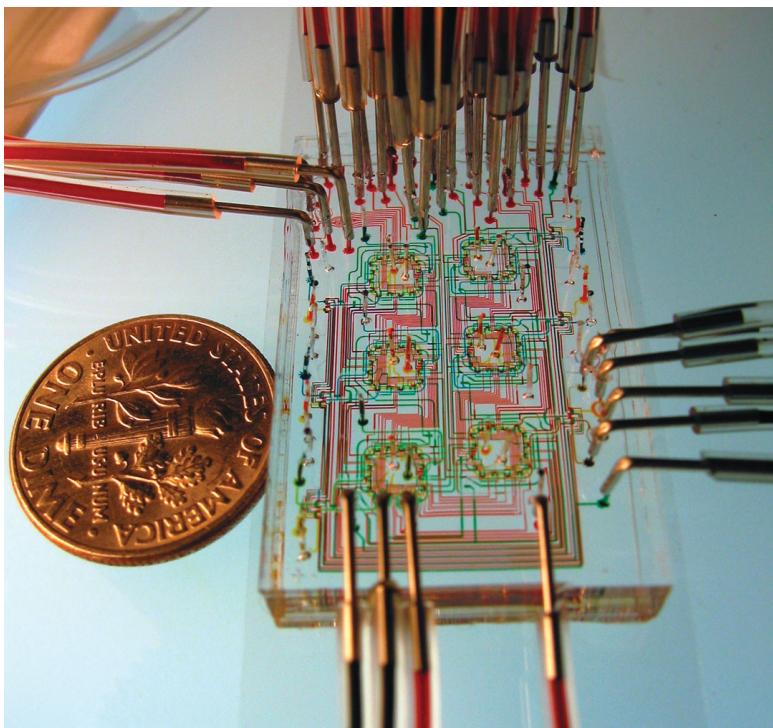

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

Figure 3. Complexity and uncertainty in a biological circuit design. Although we can build and model the circuit from **box 1**, it is remarkably difficult to capture even all the known interactions (let alone the unknown interactions). In our model, we have a single killing term that sets the rate of cell death proportional to the product of the killing rate constant, CcdB level and cell number. In reality, the situation is far more muddled. CcdB operates on DNA gyrase in a manner whose mechanistic details are still open to debate. The downstream effects of CcdB are plural and interrelated, and each of these involves many components. For example, the SOS response involves over a dozen players. Attempting to incorporate all the partially understood downstream effects would complicate the model with no guarantee of improving its accuracy. Nevertheless, by omitting them, we make the implicit assumption that they do not affect system dynamics.

experimental studies aimed at deciphering the origin and characteristics of cellular noise (Elowitz *et al.* 2002; Ozbudak *et al.* 2002; Blake *et al.* 2003; Raser & O'shea 2004; Hooshangi *et al.* 2005; Pedraza & Van Oudenaarden 2005; Rosenfeld *et al.* 2005; Austin *et al.* 2006; Guido *et al.* 2006; Volfson *et al.* 2006).


Remarkably, measurement capabilities are continuing to improve in resolution, as tools to track single molecules *in vivo* have also been developed. Building on previous mRNA visualization techniques (Bertrand *et al.* 1998), it is now possible to track individual mRNAs *in vivo* by using multiple fluorescent mRNA-binding proteins (Fusco *et al.* 2003; Golding & Cox 2004; Shav-Tal *et al.* 2004). Yu *et al.* show that it is even possible to detect a *single* fast maturing fluorescent protein by targeting it to the membrane (Yu *et al.* 2006). These detection methods improve researchers' abilities to quantify the abundance and localization of cellular components. Researchers can then determine when and where the experimental system deviates from their expectations, improving their ability to test and troubleshoot designs.

It is a rare and joyous occasion when a synthetic genetic circuit actually works as expected for the first time. The laborious and time-consuming process of characterizing and debugging biological programs will become more significant as the circuits increase in complexity. This process is, by and large, the rate-limiting step for engineering gene circuits that program sophisticated dynamic behaviour (**box 1**). An important advance in this area is the miniaturization of characterization processes through microfluidics—the science and technology of systems that manipulate small amounts of fluids (10^{-9} – 10^{-18} l), using micro-sized channels (Quake & Scherer 2000; Hong & Quake 2003). Microfluidic metering enables ultra-low consumption of biological samples and reagents, allowing high-throughput research at low cost with short analysis time. Microfluidic miniaturization also facilitates automation and integration of complex chemical or biological procedures into a single process that is faster, more precise and more reproducible than its manual counterparts. Pioneered by the Quake laboratory, the development of actuatable pneumatic valves

through multilayer soft lithography (MSL) has facilitated the design of complicated devices equipped with pumps, fluidic isolation and mixers (Unger *et al.* 2000). As a proof of concept for synthetic biological application, Balagadde and colleagues devised and implemented a miniaturized 16 nl bioreactor, called a microchemostat, that enables automated culturing and monitoring of small populations (10^2 – 10^4) of bacteria for hundreds of hours with single-cell resolution (Balagadde *et al.* 2005). By reducing the reactor volume by a factor of 10^5 when compared with traditional chemostats, microchemostat populations undergo proportionately fewer divisions per hour, which suppress the *total* mutation rate of the population. This, in turn, effectively insulates the micro-cultures from rapid evolution, prolonging monitoring of genetically homogeneous populations. The microchemostat system is automated by the custom software that controls periodic media dilution, culture mixing, image acquisition and image analysis. Its unique design also allows multiple experiments to be run in parallel on the same chip (**figure 4**). In addition to the measurements of cell density and morphology, a recently improved chip design enables measurements of gene expression dynamics reported by fluorescence or luminescence (F. Balagadde, unpublished data).

In another microfluidics application, Thorsen and colleagues created a 'comparator' capable of screening individual cells for desired functionality in a high-throughput manner. In this device, two reagents can be separately loaded into 256 pairs of subnanolitre reaction chambers. Adjacent chambers are united allowing the reagents to mix and react. The products of each reaction can then be selectively recovered. This system was used to perform a high-throughput detection of single bacterial cells expressing recombinant cytochrome *c* peroxidase (Thorsen *et al.* 2002).

Fu and colleagues fabricated a microfluidic fluorescence-activated cell sorter (FACS) to sort live fluorescent *E. coli* cells. Compared with the conventional FACS machines, the microfluidic device allows for more sensitive optical detection of bacterial cells as well as DNA strands, and it is also capable of 'reverse' sorting. Reverse sorting is a procedure where cells are

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
10321033 Figure 4. A microfluidic chip with six parallel microchemostat reactors, used to study the growth of microbial populations. The
1034 coin is 18 mm in diameter.
10351036 scanned at a high flow rate until a fluorescent cell is
1037 detected. Flow is then stopped and reversed, allowing
1038 the cell to be measured a second time and diverted into
1039 a collection tube. Reverse sorting is particularly useful
1040 for isolating rare cells or making multiple measure-
1041 ments on a single cell (Fu *et al.* 2002).1042 The aforementioned microfluidic devices can be used
1043 in stand-alone applications or as part of an integrated
1044 system. They are also disposable, which eliminates any
1045 cross-contamination in between the runs. These and
1046 many other microfluidic systems (Cookson *et al.* 2005;
1047 Groisman *et al.* 2005; Zhang *et al.* 2006) being actively
1048 developed will become important tools for synthetic
1049 biologists (El-Ali *et al.* 2006).1053

3. APPLICATIONS

1054

3.1. Green chemistry

1055 Natural biological systems are astonishing production
1056 factories capable of synthesizing an impressive array of
1057 chemicals with relatively high yields. For example, the
1058 plant metabolome alone is estimated to contain over 1
1059 million unique chemical species (Schwab 2003).
1060 Furthermore, all of these diverse chemical species are
1061 synthesized under 'gentle' conditions in the cells (i.e. in
1062 aqueous solutions and at mild temperatures). In
1063 contrast, current methods for organic synthesis often
1064 rely upon exotic solvents, reaction conditions and
1065 catalysts. Not only are such methods expensive, but
1066 they can also produce a variety of undesirable and toxic
1067 waste products. These problems can be alleviated
1068 through development of novel biological catalysts and
1069 synthetic metabolic pathways. Such advances could
1070 usher in a new era of environmentally friendly or 'green'1072 chemistry by breaking our dependence on toxic solvents
1073 and catalysts while decreasing waste product formation.1074 It would be naive to think that custom metabolic
1075 synthesis will replace the majority of organic chemical
1076 synthesis in the near future. However, it can have an
1077 immediate impact on several areas. One such example
1078 is the production of artemisinic acid, a precursor to the
1079 antimalarial drug artemisinin. Originally discovered as
1080 a Chinese herbal therapy, artemisinin is currently
1081 isolated from the shrub *Artemisia annua*, but it is too
1082 expensive for most populations where malaria is a
1083 problem. Total chemical synthesis is difficult and
1084 costly, but researchers have recently reported the
1085 production of up to 100 mg l⁻¹ artemisinic acid from
1086 an engineered laboratory yeast strain (Ro *et al.* 2006).
1087 To engineer the yeast strain, Keasling and colleagues
1088 first increased precursor production by manipulating
1089 the farnesyl pyrophosphate (FPP) pathway to augment
1090 FPP yield. They additionally downregulated a gene
1091 that diverts FPP to a sterol-producing pathway. They
1092 then added genes from *A. annua* to convert FPP to
1093 amorphadiene and subsequently convert amorphadiene
1094 to artemisinic acid. The authors report a simple
1095 purification scheme to recover the artemisinic acid,
1096 which can then be converted to artemisinin in a
1097 relatively straightforward chemical reaction. This
1098 would appear to be a vast improvement over their
1099 complementary work in *E. coli* that reported the
1100 introduction of a metabolic pathway capable of produc-
1101 ing up to 24 mg l⁻¹ of amorphadiene, an artemisinic
1102 acid precursor (Martin *et al.* 2003). It has recently been
1103 reported, however, that the engineered *E. coli* strain
1104 produces higher levels (500 mg ml⁻¹) than previously
1105 measured (Newman *et al.* 2006). Measurement errors
1106 were due to the high volatility of amorphadiene in
1107

aqueous solutions. It therefore remains to be seen which organism will ultimately be the most useful as a bioreactor for this application. That virtually the same metabolic pathway can be built in two organisms from different taxonomic domains is perhaps an indication of the potential plasticity of cellular metabolism in the hands of a skilled practitioner.

Artemisinic acid is not the first example of a therapeutic molecule produced in a cell culture. Many drugs currently on the market including insulin, erythropoietin and therapeutic antibodies are also made in cellular bioreactors. However, artemisinic acid is distinctly different from most biologically cultivated therapeutics, because it is not a protein and requires many more metabolic steps than simple transcription and translation. All these steps must be carefully regulated and balanced to control metabolic fluxes and maximize yield. This type of synthetic biology is deeply rooted in what many might call metabolic engineering (Bailey 1991; Stephanopoulos & Vallino 1991). Some may even argue that metabolic engineers have been doing synthetic biology far before the label became well established.

3.2. Therapeutics

Drug production is only one example of how synthetic biology can contribute to medicine. In this age of shots and pills, it is easy to forget that our bodies' defence system is predominantly composed of cells. Billions of immunological cells patrol our bodies at any given time on the lookout for antigens that indicate foreign cells or abnormal function. A key feature of our immune system is that it is predominantly targeted to the particular offending pathogens or region of infection through the use of cell surface receptors and signalling molecules (Goldsby 2003). Most drugs, however, are often taken systemically and can be damaging to unintended targets. For example, many chemotherapy treatments aim to control the fast proliferating cells in the cancer, but inadvertently destroy the rapidly dividing hair follicles and cells of gastric linings, resulting in hair loss and digestion problems.

Cells can be engineered to recognize specific targets or conditions in our bodies that are not naturally recognized by the immune system. Although some drugs can also be targeted to specific locations through aptamer (Mcnamara *et al.* 2006) or antibody conjugation (Schrama *et al.* 2006), a cell has the advantage of being able to interpret and respond to complex environmental signals. Anderson *et al.* (2005) engineered bacteria to invade tumours in response to specific extracellular conditions. By directing expression of the invasion gene from *Yersinia pseudotuberculosis* through promoters responsive to hypoxia, cell density or arabinose, they restricted bacterial invasion of mammalian tumour cells to these conditions. This is significant because the tumour environment is often hypoxic and allows for high bacterial cell densities due to depressed immune function in the tumour. Therefore, this work demonstrates, as a 'proof of concept', that one can potentially use engineered bacteria to

target diseased cells without significantly impacting healthy cells.

A lot of synthetic biology research has been carried out in bacteria due to their ease of manipulation and simpler physiology when compared with mammalian cells. While engineered bacteria do have tremendous potential for therapeutic applications, as previously illustrated, the general public may feel more comfortable dealing with therapeutics derived from mammalian cells. Furthermore, mammalian cells are already closer to being optimized for functions in the human body. For these reasons, major advances in cell-based cancer therapeutics are being made through engineering of mammalian cells, including stem cells. Rosenberg and colleagues report the generation and application of tumour-specific T-cells in 15 metastatic melanoma patients (Morgan *et al.* 2006). To generate the cells, a T-cell receptor recognizing the tumour-associated antigen (TAA) MART-1 was transfected (using a retroviral vector) into the peripheral blood lymphocytes isolated from the patients. Patients received the engineered cells by adoptive cell transfer. Even though only 2 out of the 15 patients showed sustained regression, the work demonstrates the potential applicability of targeted therapy using engineered cells. The authors also indicate many possibilities for improvement in future trials, such as tighter binding TAA receptors or cytokine/tissue-homing mechanisms.

The aforementioned work used a retrovirus for integration of the transgene into patients' cells *ex vivo*. Viral vectors for gene therapy often *insert* DNA at a particular locus in the cells' chromosome. However, in many cases, it may be more desirable to actually *replace* a malfunctioning gene. Recent 'parts design' has produced a library of the so-called zinc-finger nucleases (ZFNs) that may enable *in vivo* human gene replacement. ZFNs join a type of DNA recognition element (zinc finger motifs) and a DNA-cleaving enzyme (nuclease) to target a specified sequence. Unlike many of the common bacterially isolated restriction enzymes, which recognize 4, 6 or 8 bp, ZFNs can recognize a sequence long enough for it to be unique in an organism's genome. Urnov *et al.* report the construction and application of a pair of ZFNs that recognize a 24 bp site in the human genome (Urnov *et al.* 2005). The ZFNs create a double-strand break in the chromosome. The break, in turn, induces cells' natural homologous recombination machinery to incorporate DNA from synthetic donor constructs. Twenty per cent of chromosomes successfully recombined, leading to 7% of cells homozygous for the correction in the absence of selection. ZFNs or other large and specific endonuclease design (Arnould *et al.* 2005; Ashworth *et al.* 2006) may hold the key to altering an organism's DNA post-development. Such *in vivo* genome alterations will enable therapeutic intervention ranging from simple replacement of mutant alleles with wild-type to controlled integration of novel multi-gene circuits. An intrinsic advantage of gene correction (over gene insertion) is that the replaced allele is present in its natural chromosomal locus, therefore increasing the chance it will be properly regulated.

1261 **3.3. Renewable energies**

1262 As the global supply of fossil fuels diminishes, alternative
 1263 and renewable energy sources will become more critical than ever before. Production of bioethanol,
 1264 ethanol derived from crops, has emerged as a potential way to convert abundant solar energy gathered by
 1265 plants into easily stored fuel for combustion engines (Hahn-Hagerdal *et al.* 2006). Production of bioethanol
 1266 relies upon micro-organisms, such as yeast, to ferment the plant materials. A current limitation, however, is
 1267 that most naturally occurring or laboratory micro-organisms are incapable of converting all types of
 1268 energy-storing compounds found in crops into ethanol. For this reason, sugarcane and corn are the major
 1269 feedstocks for bioethanol conversion (both sucrose and starch can easily be converted to glucose). Conse-
 1270 quently, bioethanol production is economically feasible
 1271 only in the regions producing such crops, such as Brazil.

1272 All human habitats have naturally thriving plants
 1273 that contain other energy-storing compounds, includ-
 1274 ing cellulose (40–50%), hemicellulose (25–35%) and
 1275 lignin (15–20%; Grey *et al.* 2006). However, for this
 1276 ‘cellulosic biomass’ to be used, improvements must be
 1277 made in both the enzymatic degradation of these
 1278 compounds into simpler sugars (including glucose) and the efficient conversion of non-glucose sugars to
 1279 ethanol. Optimization of enzymes such as cellulose and
 1280 hemicellulase can result in decreased costs and higher
 1281 efficiency. Here, synthetic biology could play a role by
 1282 either boosting expression through systems design or
 1283 improving activity and stability through parts design.

1284 Microbial strain engineering has already begun to
 1285 tackle the issue of non-glucose sugar conversion
 1286 (Jeffries 2006). The primary non-glucose sugar formed
 1287 after enzymatic breakdown of cellulosic biomass is the
 1288 pentose sugar xylose. As a result, early efforts have
 1289 focused on the engineering of microbial strains capable
 1290 of co-fermenting glucose and xylose simultaneously in
 1291 order to increase yield and production rates. Ho and
 1292 colleagues address the xylose utilization issue by
 1293 introducing three xylose-metabolizing genes into the
 1294 yeast chromosome at multiple copy numbers: xylose
 1295 reductase (XR); xylitol dehydrogenase (XD) and
 1296 xylulokinase (XK; Sedlak & Ho 2004). Together,
 1297 these three enzymes convert xylose to xylulose-5-
 1298 phosphate, a key metabolite in the yeast pentose
 1299 metabolism pathway. Resulting strains produced etha-
 1300 nol levels in excess of 75% of the theoretical yield of
 1301 sugars consumed. An alternate method, described by
 1302 the Pronk laboratory, features the introduction of a
 1303 fungal xylose isomerase from *Piromyces* and the over-
 1304 expression of downstream pentose phosphate pathway
 1305 genes: xylulokinase; ribose 5-phosphate isomerase;
 1306 ribulose-5-phosphate epimerase; transketolase; and
 1307 transaldolase (Kuyper *et al.* 2005). The *GRE3* gene,
 1308 which produces unwanted side product xylitol, was
 1309 deleted from the strain. The resulting strain was
 1310 capable of fast anaerobic growth with xylose as the
 1311 sole carbon source, but still showed a strong preference
 1312 for glucose in mixed carbon source cultures. In
 1313 subsequent work, Pronk and colleagues employed
 1314 long-term nutrient-limited chemostatic cultures to

1324 evolve strains with improved xylose uptake and usage
 1325 kinetics, resulting in a strain that completely ferments
 1326 both glucose and xylose in less than 25 h. While both
 1327 sets of strains described here can benefit from further
 1328 improvements, they demonstrate the progress being
 1329 made towards expanding bioethanol production to
 1330 more diverse crops. Future generations may be
 1331 cultivating high yield and easy to grow species such
 1332 as switchgrass or hybrid poplar trees to fuel the worlds
 1333 growing energy needs.

1334 **3.4. Pattern formation**

1335 The human body is a complex system of specialized
 1336 cells, tissues and organs. Remarkably, each highly
 1337 specialized cell in our bodies arises from a single
 1338 fertilized egg cell. This process of differentiation and
 1339 morphogenesis is mediated by the delicate interplay of
 1340 chemical gradients, cellular receptors, differential gene
 1341 expression and cell migration (Gilbert 2000). The end
 1342 result is that the 100 trillion cells of the adult human are
 1343 neatly arranged and specialized in a way that allows for
 1344 proper functioning of all bodily processes. Nature has
 1345 produced incredibly complex systems, as well as a
 1346 fantastic way of assembling them. This accomplish-
 1347 ment is even more amazing considering that the overall
 1348 robust system builds upon components that are often
 1349 intrinsically ‘noisy’. With regard to this accomplish-
 1350 ment, the synthetic biologist can ask ‘in what ways can
 1351 we recreate or use the complex pattern formation
 1352 systems found in nature, and to what ends?’

1353 As a first step to address this question, Weiss and
 1354 colleagues rewired cell signalling pathways to create a
 1355 model system of chemical gradient-induced pattern
 1356 formation in bacteria (Basu *et al.* 2005). ‘Sender cells’
 1357 produce a small membrane-diffusible chemical, acylho-
 1358 moserine lactone (AHL), by expressing the *luxI* gene
 1359 from *V. fischeri*. ‘Receiver cells’, in turn, respond to the
 1360 signal through *luxR* activation upon AHL binding,
 1361 which induces transcription from a *lux* promoter. By
 1362 placing both a single repressor and a double repressor
 1363 cascade behind *lux* promoters, Weiss and colleagues
 1364 effectively created a band detector such that a down-
 1365 stream gene (*gfp*) is expressed only at intermediate
 1366 concentrations of AHL. Furthermore, by creating
 1367 variants of receiver plasmids through *luxR* mutagenesis
 1368 and copy number reduction, receivers can be tuned to
 1369 respond to different bands of AHL concentrations.
 1370 Consequently, when a region of sender cells is placed
 1371 within a lawn of receiver cells, fluorescence is observed
 1372 only in a ring whose distance from the sender cells
 1373 varies in accordance with the version of the receiver
 1374 plasmid used. The visual result resembles a bullseye.

1375 While the bullseye pattern is novel and interesting,
 1376 one may be left wondering what use it can find. With a
 1377 little imagination, however, one can envision using this
 1378 pattern formation system to control a master regulat-
 1379 orily gene capable of committing cells to a particular
 1380 developmental fate. A higher-order function in natural
 1381 biological systems is associated with multi-cellularity
 1382 and cellular specialization. To produce similarly
 1383 complex functions, synthetic biologists will require
 1384 mechanisms that produce and maintain differentiation

1387 patterns. These mechanisms may lead to highly
 1388 sophisticated cellular system for fabricating biomater-
 1389 ials with well-defined dimensions. This line of research
 1390 may also synergize with research efforts focusing on
 1391 regenerative medicine (Lagasse *et al.* 2001) and tissue
 1392 engineering (Griffith & Naughton 2002), both of which
 1393 hinge upon controlling differentiation and pattern
 1394 formation. Biologists' continued efforts to implement
 1395 synthetic multi-cellular systems will drive the pro-
 1396 duction of new and better approaches to artificial
 1397 cellular communication. Most communication systems
 1398 employed by synthetic biologists thus far have made
 1399 use of the small diffusible molecules from bacterial
 1400 quorum sensing. Further developments may feature
 1401 active and regulated transport of signalling molecules
 1402 across the cell membrane and the use of cell surface
 1403 receptors to recognize and send signals to adjacent cells.
 1404

1405 4. OUTLOOK

1406 4.1. Standardization: promises and limitations

1407 It has been suggested that many of the difficulties in the
 1408 production and optimization of biological circuits are
 1409 due to improper and incomplete description of parts
 1410 (Endy 2005). These limitations are twofold: first,
 1411 functional characteristics are often unknown for many
 1412 parts; second, even if they are known, they are rarely
 1413 described using standardized measures and are often
 1414 buried in the literature. Towards addressing these
 1415 limitations, the BioBricks Foundation has established a
 1416 'registry of standard biological parts' (The_BioBricks_
 1417 Foundation). The registry categorizes parts, devices
 1418 and systems. Ultimately, the registry strives to provide
 1419 information on not only sequence but also functional
 1420 characteristics, and make information available
 1421 through a central portal. Many of these parts have
 1422 been cloned into plasmids that enable easy assembly.
 1423 The plasmids are made available to students partic-
 1424 ipating in the international Genetically Engineered
 1425 Machine competition (iGEM). Members of the Bio-
 1426 Bricks Foundation hope that the registry will decrease
 1427 the time and research costs needed to design and
 1428 implement gene circuits. Such efforts are analogous in
 1429 spirit to ongoing attempts to standardize mathematical
 1430 models (Hucka *et al.* 2003) and formats for microarray
 1431 data (Brazma *et al.* 2001). The limits in achieving parts
 1432 standardization for *E. coli* and other organisms remain
 1433 to be seen.

1434 Even with a repository of information about stan-
 1435 dardized parts, a major challenge to applying this
 1436 information will be developing strategies to deal with
 1437 context dependence (Andrianantoandro *et al.* 2006;
 1438 Arkin & Fletcher 2006). For example, synthetic gene
 1439 circuits often exhibit varying behaviour in different cell
 1440 strains. In some cases, this can be easy to rationalize by
 1441 the presence or absence of a particular gene, or a
 1442 documented difference in the growth rate. In other cases,
 1443 causes of variability are much more difficult to ascribe
 1444 due to many hidden interactions between the designed
 1445 circuit and a far-from-elucidated host circuitry.

1446 To address this issue, one may imagine selecting a
 1447 standard cell strain, in which standard parts under

1448 standard conditions are to be quantified. A starting
 1449 point for such a standard strain may be on its way. The
 1450 Blattner group has recently engineered a series of
 1451 multiple deletion strains (MDS) that have up to 15% of
 1452 their parental MG1655 genome removed but maintain
 1453 similar growth rates on minimal media (Posfai *et al.*
 1454 2006). Deletions were guided by comparative genomics
 1455 with related strains. Removing 'unnecessary' portions
 1456 of the genome can presumably reduce the number of
 1457 hidden interactions. Notably, the deletions cleaned the
 1458 cells of mobile DNA elements called insertion sequences
 1459 (IS) that might reduce the genetic stability of a circuit
 1460 by inserting themselves into and disrupting a DNA
 1461 sequence unpredictably. Interestingly, the MDS strains
 1462 produced some unanticipated benefits, including higher
 1463 electroporation efficiencies than their parent strain and
 1464 the ability to propagate some plasmids that the parent
 1465 strain could not.

1466 In an alternate approach, researchers at the Venter
 1467 Institute have used *Mycoplasma genitalium* as a
 1468 starting point in their attempts to determine a minimal
 1469 gene set by systematically mutating every gene (Glass
 1470 *et al.* 2006). *Mycoplasma genitalium* has the smallest
 1471 known genome that is capable of growth in the absence
 1472 of other species. They conclude that in a laboratory
 1473 setting, only 382 of the strain's 482 genes are essential.
 1474 Although a strain containing only this set of minimal
 1475 genes has not yet been constructed, it could eventually
 1476 serve as a bare bones platform upon which desired
 1477 functionality can be added. Such a small number of
 1478 genes might allow a greater percentage of the cell's
 1479 molecular interactions and metabolic processes to be
 1480 understood, making the strain more predictable and
 1481 desirable as a starting point. However, of the 382
 1482 essential genes determined, 110 are annotated as
 1483 hypothetical proteins or as proteins of unknown
 1484 function, indicating that a truly complete cellular
 1485 model, even for this simplest of cells, cannot yet be
 1486 produced.

1487 Despite characterizing parts in a standard strain
 1488 under defined conditions, individual parts may impact
 1489 the physiology of the host strain differently, for
 1490 instance, by placing varying burdens on the host
 1491 translation machinery. For this reason, one may wish
 1492 to minimize such interactions by creating privileged
 1493 sets of machinery. For instance, Rackham & Chin
 1494 (2005b) describe the formation of orthogonal ribo-
 1495 some—mRNA pairs that could be used to keep a
 1496 synthetic system and host more isolated. Using a dual
 1497 positive-negative selection scheme, they isolated
 1498 mRNAs with modified Shine-Dalgarno regions not
 1499 recognized by endogenous ribosomes, but instead
 1500 recognized by alternative ribosomes. Translation by
 1501 orthogonal pairs should be unaffected by endogenous
 1502 ribosomes and there should be no competition for
 1503 ribosomes between orthogonal mRNAs and traditional
 1504 mRNAs. In principle, multiple ribosome types can be
 1505 implemented for a specified function, just as cells
 1506 already possess multiple DNA or RNA polymerase
 1507 types, which play specialized roles.

1508 Previous and current progress promises an ever
 1509 growing infrastructure that will no doubt tremendously
 1510 benefit future synthetic biology research, fundamental

1513 and applied alike. Concerning standardization,
 1514 however, two critical questions remain to be addressed
 1515 by the community. First, given the amount of cell
 1516 physiology (even for highly characterized organisms
 1517 such as *E. coli*) that is still poorly understood, to what
 1518 extent can we standardize parts or systems with
 1519 confidence? Second, how much standardization can
 1520 we afford and still hope to create useful systems that
 1521 can work in complex environments such as in a cancer
 1522 or a polluted environment?

1523 There is little difficulty in unambiguously defining the
 1524 DNA sequences that code for parts, be they proteins or
 1525 RNAs. The true challenge lies at the functional levels.
 1526 Parts will impact and be impacted by cell physiology,
 1527 which also changes in response to the environmental
 1528 conditions. In addition, parts tested in isolation may
 1529 unpredictably impact each other's functions when
 1530 combined. For example, connecting one part's DNA
 1531 with another part's may introduce unintended
 1532 regulation by introducing enough flexibility in DNA to
 1533 allow DNA looping. For these reasons, one can rarely
 1534 have complete confidence in the part's function even if
 1535 he/she uses it in a standard strain characterized under a
 1536 standard condition. Many such interactions are still
 1537 poorly understood, complicating the use of standard
 1538 parts. Yet, it is precisely this complexity that makes
 1539 engineering biology challenging and interesting. Decoding
 1540 this complexity is at least one important application
 1541 of synthetic gene circuits. Without a much deeper
 1542 understanding of cellular functions at all levels, it is
 1543 difficult to even define standards meaningfully.

1544 From a practical standpoint, too much standardization
 1545 may remove flexibility in engineering useful
 1546 systems. It would be illogical to rely only on standard
 1547 strains that lack desirable properties for a particular
 1548 application. Consider thermophilic bacteria, capable of
 1549 life at temperatures as high as 113°C (Stetter 1999).
 1550 The ability to thrive at elevated temperatures may be a
 1551 useful property for synthetic organisms involved in
 1552 chemical processing, because higher temperatures
 1553 speed kinetic rates. Given the difficulty in thermo-
 1554 stabilizing even a single protein, however, it is unlikely
 1555 this quality can be engineered into a standard strain.
 1556 For many applications, the researcher is left with no
 1557 appealing options except to use non-standard strains.
 1558 No single strain or growth condition can ever cover all
 1559 potential synthetic biology applications.

1560 If we remain dedicated to standardization, gathering
 1561 standardized information for a set of potentially useful
 1562 parts, in a set of useful strains, under a set of relevant
 1563 conditions becomes a combinatorial nightmare. The
 1564 inevitable result is that standards will only be available
 1565 for a limited number of strains and conditions.
 1566 Although some information is preferable to none, a
 1567 rising danger is to place undue weight on the limited
 1568 information available and assume that a part's
 1569 behaviour will not vary significantly from the context
 1570 in which it was described. In this situation, 'significant'
 1571 is considered to be variation that exceeds the accept-
 1572 able tolerance limits of a part in its new device.
 1573 Accepting standardized information at face value,
 1574 without acknowledging its limitations, will lead one to
 1575 design many systems doomed to fail. However, being

1576 aware of the limitations allows one to use standard
 1577 information without depending on it, to be guided by
 1578 the information while simultaneously embracing
 1579 strategies like combinatorial design (Guet *et al.* 2002)
 1580 and directed evolution (Yokobayashi *et al.* 2002) of
 1581 circuits—strategies that would be unnecessary in a fully
 1582 standardized and predictable world.

4.2. *De novo* cells

1583 Finally, synthetic biology may, in addition to redesigning
 1584 cellular processes, contribute to producing artificial
 1585 cells exhibiting all the qualities that we associate with
 1586 life. For a good review of what characteristics such a cell
 1587 would need and what progress has already been made,
 1588 see Deamer (2005). It is probable that no matter what
 1589 system is devised for artificial encapsulation of
 1590 materials in membranes capable of self-reproduction,
 1591 there will be argument as to whether life has truly been
 1592 created. In fact, somatic cell nuclear transfer, best
 1593 known for cloning Dolly, the sheep, has already
 1594 accomplished a cellular 'cold boot'. At the moment
 1595 that the nucleus containing the DNA (software) is
 1596 removed from the somatic cell, it is no longer living by
 1597 standard definitions and could be considered a collec-
 1598 tion of nucleic acid and protein molecules. Similarly, an
 1599 enucleated egg cell and cytoplasm (hardware) is not
 1600 alive by consensus definitions. However, when the two
 1601 are combined, life arises anew. The immediate retort
 1602 might be that the system relies too heavily on cellular-
 1603 derived components. Where does one draw the line
 1604 however? Will it only officially be the 'creation of life' if
 1605 each protein, nucleic acid or lipid in the new pseudo-
 1606 cells is chemically synthesized from precursors? Will
 1607 precursors themselves need to be produced from pure
 1608 elements? In any case, *de novo* cell design can shed light
 1609 on both the properties needed to produce life and how
 1610 terrestrial life could have arisen initially.

4.3. Social impact

1611 Synthetic biology will undoubtedly head in many
 1612 unforeseen directions in the coming years and decades,
 1613 but along the way, researchers in the field are paying
 1614 particular attention to legal, ethical and political issues
 1615 dealing with the redesign of life. At the second annual
 1616 Synthetic Biology conference (SB2.0) in 2006, a full
 1617 third of the time was devoted to issues of bio-safety,
 1618 public perception, ownership and community organiza-
 1619 tion. Even in the early stages of the field, the need for
 1620 this discussion was apparent to many. Although
 1621 screening and controls have been put in place by
 1622 many DNA synthesis companies, these technologies can
 1623 allow for the purchase of potentially dangerous genetic
 1624 material. Nothing has illustrated this point more
 1625 clearly than the 2002 production of poliovirus from
 1626 synthetic DNA by the Wimmer laboratory (Cello *et al.*
 1627 2002). Using only synthetic oligos, cells expressing T7
 1628 polymerase and cell-free extracts, an 'eradicated' virus
 1629 with the same pathogenic properties as the original was
 1630 reproduced. Public perception issues were highlighted
 1631 by the publication of an open letter from a group of
 1632 NGOs, including Greenpeace and ETC that called for
 1633

1639 synthetic biologists to drop plans for self-governance
 1640 and instead demand governmental supervision due to
 1641 the 'potential power and scope of this field'.
 1642 A consideration of ownership issues arises from the fact
 1643 that if biological parts are owned and protected by
 1644 various entities, it may be legally difficult to produce a
 1645 complex system incorporating many of those parts—
 1646 hindering innovation and potential societal good. Active
 1647 analysis by legal scholars is needed to develop systems
 1648 that ensure freedom to operate, but maintain incentives
 1649 for invention and development. Some of this analysis is
 1650 already underway (Rai & Boyle forthcoming). Finally,
 1651 the need for community organization is evident in order to
 1652 not only manage the issues of public perception, bio-
 1653 safety and ownership, but also to guide the field in a way
 1654 that reduces growing pains. Particularly important is the
 1655 prevention of unrealistic expectations on the part of
 1656 granting agencies and public. Synthetic biology holds a
 1657 lot of promise, but none of the fields can address all
 1658 problems and none have produced any answers over-
 1659 night—despite popular hype. To achieve its vast
 1660 potential, synthetic biology will need sustained support
 1661 from governments and a public that understands progress
 1662 is made in incidental steps.

1665 7. UNCITED REFERENCES

1666 **Rosenfeld et al. (2002) and Kobayashi et al. (2004).**

1667 We thank Jingdong Tian, Ron Weiss, Katarina Midelfort and
 1668 Amelia Tauchen for their helpful discussions. Current
 1669 research in the You lab is supported by the National
 1670 Academies Keck Futures' Initiatives, the National Institute
 1671 of Health, the National Science Foundation and the David
 1672 and Lucile Packard Foundation.

1676 REFERENCES

1677 An, C. I., Trinh, V. B. & Yokobayashi, Y. 2006 Artificial
 1678 control of gene expression in mammalian cells by
 1679 modulating RNA interference through aptamer-small
 1680 molecule interaction. *RNA* **12**, 710–716. (doi:10.1261/
 1681 rna.2299306)

1682 Anderson, J. C., Clarke, E. J., Arkin, A. P. & Voigt, C. A.
 1683 2005 Environmentally controlled invasion of cancer cells
 1684 by engineered bacteria. *J. Mol. Biol.* **335**, 619–627.

1685 Andrianantoandro, E., Basu, S., Karig, D. K. & Weiss, R.
 1686 2006 Synthetic biology: new engineering rules for an
 1687 emerging discipline. *Mol. Syst. Biol.* **2**, 0028. (doi:10.
 1688 1038/msb4100073)

1689 Arkin, A. P. & Fletcher, D. A. 2006 Fast, cheap and
 1690 somewhat in control. *Genome Biol.* **7**, 114. (doi:10.1186/
 1691 gb-2006-7-8-114)

1692 Arnold, F. H. 2001 Combinatorial and computational
 1693 challenges for biocatalyst design. *Nature* **409**, 253–257.
 1694 (doi:10.1038/35051731)

1695 Arnould, S. et al. 2005 Engineering of large numbers of highly
 1696 specific homing endonucleases that induce recombination
 1697 on novel DNA targets. *J. Mol. Biol.* **355**, 443–458. (doi:10.
 1698 1016/j.jmb.2005.10.065)

1699 Ashworth, J., Havranek, J. J., Duarte, C. M., Sussman, D.,
 1700 Monnat Jr, R. J., Stoddard, B. L. & Baker, D. 2006
 1701 Computational redesign of endonuclease DNA binding and
 1702 cleavage specificity. *Nature* **441**, 656–659. (doi:10.1038/
 1703 nature04818)

Asthagiri, A. R. & Lauffenburger, D. A. 2000 Bioengineering
 1702 models of cell signaling. *Annu. Rev. Biomed. Eng.* **2**, 31–53.
 1703 (doi:10.1146/annurev.bioeng.2.1.31)

Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J.
 1704 2003 Development Of Genetic circuitry exhibiting toggle
 1705 switch or oscillatory behavior in *Escherichia coli*. *Cell* **113**,
 1706 597–607. (doi:10.1016/S0092-8674(03)00346-5)

Austin, D. W., Allen, M. S., Mccollum, J. M., Dar, R. D.,
 1707 Wilgus, J. R., Sayler, G. S., Samatova, N. F., Cox, C. D. &
 1708 Simpson, M. L. 2006 Gene network shaping of inherent noise
 1709 spectra. *Nature* **439**, 608–611. (doi:10.1038/nature04194)

Bailey, J. E. 1991 Toward a science of metabolic engineering.
 1710 *Science* **252**, 1668–1675. (doi:10.1126/science.2047876)

Balagadde, F. K., You, L., Hansen, C. L., Arnold, F. H. &
 1711 Quake, S. R. 2005 Long-term monitoring of bacteria
 1712 undergoing programmed population control in a micro-
 1713 chemostat. *Science* **309**, 137–140. (doi:10.1126/science.
 1714 1109173)

Bassler, B. L. & Losick, R. 2006 Bacterially speaking. *Cell*
 1715 **125**, 237–246. (doi:10.1016/j.cell.2006.04.001)

Basu, S., Mehreja, R., Thibierge, S., Chen, M. T. & Weiss, R.
 1716 2004 Spatiotemporal control of gene expression with pulse-
 1717 generating networks. *Proc. Natl Acad. Sci. USA* **101**,
 1718 6355–6360. (doi:10.1073/pnas.0307571101)

Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. &
 1719 Weiss, R. 2005 A synthetic multicellular system for
 1720 programmed pattern formation. *Nature* **434**, 1130–1134.
 1721 (doi:10.1038/nature03461)

Bayer, T. S. & Smolke, C. D. 2005 Programmable ligand-
 1722 controlled riboregulators of eukaryotic gene expression.
 1723 *Nat. Biotechnol.* **23**, 337–343. (doi:10.1038/nbt1069)

Becskei, A., Seraphin, B. & Serrano, L. 2001 Positive
 1724 feedback in eukaryotic gene networks: cell differentiation
 1725 by graded to binary response conversion. *EMBO J.* **20**,
 1726 2528–2535. (doi:10.1093/emboj/20.10.2528)

Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M.,
 1727 Singer, R. H. & Long, R. M. 1998 Localization of ASH1
 1728 mRNA particles in living yeast. *Mol. Cell* **2**, 437–445.
 1729 (doi:10.1016/S1097-2765(00)80143-4)

Blake, W. J., KAErn, M., Cantor, C. R. & Collins, J. J. 2003
 1730 Noise in eukaryotic gene expression. *Nature* **422**, 633–637.
 1731 (doi:10.1038/nature01546)

Brazma, A. et al. 2001 Minimum information about a
 1732 microarray experiment (MIAME)—toward standards for
 1733 microarray data. *Nat. Genet.* **29**, 365–371. (doi:10.1038/
 1734 ng1201-365)

Bulter, T., Lee, S. G., Wong, W. W., Fung, E., Connor, M. R. &
 1735 Liao, J. C. 2004 Design of artificial cell–cell communication
 1736 using gene and metabolic networks. *Proc. Natl Acad. Sci.*
 1737 *USA* **101**, 2299–2304. (doi:10.1073/pnas.0306484101)

Carr, P. A., Park, J. S., Lee, Y. J., Yu, T., Zhang, S. &
 1738 Jacobson, J. M. 2004 Protein-mediated error correction for
 1739 *de novo* DNA synthesis. *Nucleic Acids Res.* **32**, e162.
 1740 (doi:10.1093/nar/gnh160)

Cello, J., Paul, A. V. & Wimmer, E. 2002 Chemical synthesis
 1741 of poliovirus cDNA: generation of infectious virus in the
 1742 absence of natural template. *Science* **297**, 1016–1018.
 1743 (doi:10.1126/science.1072266)

Chen, M. T. & Weiss, R. 2005 Artificial cell–cell communica-
 1744 tion in yeast *Saccharomyces cerevisiae* using signaling
 1745 elements from *Arabidopsis thaliana*. *Nat. Biotechnol.* **23**,
 1746 1551–1555. (doi:10.1038/nbt1162)

Collins, C. H., Arnold, F. H. & Leadbetter, J. R. 2005
 1747 Directed evolution of *Vibrio fischeri* LuxR for increased
 1748 sensitivity to a broad spectrum of acyl-homoserine
 1749 lactones. *Mol. Microbiol.* **55**, 712–723. (doi:10.1111/
 1750 j.1365-2958.2004.04437.x)

1765 Collins, C. H., Leadbetter, J. R. & Arnold, F. H. 2006 Dual
1766 selection enhances the signaling specificity of a variant of
1767 the quorum-sensing transcriptional activator LuxR. *Nat.*
1768 *Biotechnol.* **24**, 708–712. (doi:10.1038/nbt1209) 1828

1769 Cookson, S., Ostroff, N., Pang, W. L., Wolfson, D. & Hasty, J.
1770 2005 Monitoring dynamics of single-cell gene expression
1771 over multiple cell cycles. *Mol. Syst. Biol.* **1**, 0024. (doi:10.
1772 1038/msb4100032) 1829

1773 Davidson, E. A. & Ellington, A. D. 2005 Engineering regulatory
1774 RNAs. *Trends Biotechnol.* **23**, 109–112. (doi:10.1016/
1775 j.tibtech.2005.01.006) 1830

1776 Deamer, D. 2005 A giant step towards artificial life? *Trends*
1777 *Biotechnol.* **23**, 336–338. (doi:10.1016/j.tibtech.2005.05.008) 1831

1778 Desai, S. K. & Gallivan, J. P. 2004 Genetic screens and
1779 selections for small molecules based on a synthetic
1780 riboswitch that activates protein translation. *J. Am.*
1781 *Chem. Soc.* **126**, 13 247–13 254. (doi:10.1021/ja048634j) 1832

1782 Dueber, J. E., Yeh, B. J., Chak, K. & Lim, W. A. 2003
1783 Reprogramming control of an allosteric signaling switch
1784 through modular recombination. *Science* **301**, 1904–1908.
(doi:10.1126/science.1085945) 1833

1785 Dunn, G. A. & Jones, G. E. 2004 Cell motility under the
1786 microscope: Vorsprung durch Technik. *Nat. Rev. Mol. Cell*
1787 *Biol.* **5**, 667–672. (doi:10.1038/nrm1439) 1834

1788 Dwyer, M. A., Looger, L. L. & Hellinga, H. W. 2003
1789 Computational design of a Zn²⁺ receptor that controls
1790 bacterial gene expression. *Proc. Natl Acad. Sci. USA* **100**,
11 255–11 260. (doi:10.1073/pnas.2032284100) 1835

1791 Dwyer, M. A., Looger, L. L. & Hellinga, H. W. 2004
1792 Computational design of a biologically active enzyme.
1793 *Science* **304**, 1967–1971. (doi:10.1126/science.1098432) 1836

1794 El-Ali, J., Sorger, P. K. & Jensen, K. F. 2006 Cells on chips.
1795 *Nature* **442**, 403–411. (doi:10.1038/nature05063) 1837

1796 Ellington, A. D. & Szostak, J. W. 1990 *In vitro* selection of
1797 RNA molecules that bind specific ligands. *Nature* **346**,
818–822. (doi:10.1038/346818a0) 1838

1798 Elowitz, M. B. & Leibler, S. 2000 A synthetic oscillatory
1799 network of transcriptional regulators. *Nature* **403**,
335–338. (doi:10.1038/35002125) 1839

1800 Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. 2002
1801 Stochastic gene expression in a single cell. *Science* **297**,
1183–1186. (doi:10.1126/science.1070919) 1840

1802 Endy, D. 2005 Foundations for engineering biology. *Nature*
1803 **438**, 449–453. (doi:10.1038/nature04342) 1841

1804 Falke, J. J., Bass, R. B., Butler, S. L., Chervitz, S. A. &
1805 Danielson, M. A. 1997 The two-component signaling
1806 pathway of bacterial chemotaxis: a molecular view of
1807 signal transduction by receptors, kinases, and adaptation
1808 enzymes. *Annu. Rev. Cell Dev. Biol.* **13**, 457–512. (doi:10.
1146/annurev.cellbio.13.1.457) 1842

1809 Francois, P. & Hakim, V. 2004 Design of genetic networks with
1810 specified functions by evolution in silico. *Proc. Natl Acad.*
1811 *Sci. USA* **101**, 580–585. (doi:10.1073/pnas.0304532101) 1843

1812 Fu, A. Y., Chou, H. P., Spence, C., Arnold, F. H. & Quake,
1813 S. R. 2002 An integrated microfabricated cell sorter. *Anal.*
1814 *Chem.* **74**, 2451–2457. (doi:10.1021/ac0255330) 1844

1815 Fung, E., Wong, W. W., Suen, J. K., Bulter, T., Lee, S. G. &
1816 Liao, J. C. 2005 A synthetic gene-metabolic oscillator.
1817 *Nature* **435**, 118–122. (doi:10.1038/nature03508) 1845

1818 Fusco, D., Accornero, N., Lavoie, B., Shenoy, S. M.,
1819 Blanchard, J. M., Singer, R. H. & Bertrand, E. 2003
1820 Single mRNA molecules demonstrate probabilistic move-
1821 ment in living mammalian cells. *Curr. Biol.* **13**, 161–167.
(doi:10.1016/S0960-9822(02)01436-7) 1846

1822 Garcia-Ojalvo, J., Elowitz, M. B. & Strogatz, S. H. 2004
1823 Modeling a synthetic multicellular clock: repressors
1824 coupled by quorum sensing. *Proc. Natl Acad. Sci. USA*
1825 **101**, 10 955–10 960. (doi:10.1073/pnas.0307095101) 1847

1826 Gardner, T. S., Cantor, C. R. & Collins, J. J. 2000
1827 Construction of a genetic toggle switch in *Escherichia*
1828 *coli*. *Nature* **403**, 339–342. (doi:10.1038/35002131) 1829

1829 Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y.
1830 2006 The fluorescent toolbox for assessing protein location
1831 and function. *Science* **312**, 217–224. (doi:10.1126/science.
1124618) 1832

1832 Gilbert, S. F. 2000 *Developmental biology*. Sunderland, MA:
1833 Sinauer Associates. 1834

1834 Gilman, A. & Arkin, A. P. 2002 Genetic “code”: represen-
1835 tations and dynamical models of genetic components and
1836 networks. *Annu. Rev. Genomics Hum. Genet.* **3**, 341–369.
(doi:10.1146/annurev.genom.3.030502.111004) 1837

1837 Glass, J. I., Assad-Garcia, N., Alperovich, N., Yooseph, S.,
1838 Lewis, M. R., Maruf, M., Hutchison 3rd, C. A., Smith,
1839 H. O. & Venter, J. C. 2006 Essential genes of a minimal
1840 bacterium. *Proc. Natl Acad. Sci. USA* **103**, 425–430.
(doi:10.1073/pnas.0510013103) 1841

1841 Golding, I. & Cox, E. C. 2004 RNA dynamics in live
1842 *Escherichia coli* cells. *Proc. Natl Acad. Sci. USA* **101**,
11 310–11 315. (doi:10.1073/pnas.0404443101) 1842

1842 Goldsby, R. 2003 *Immunology*. New York, NY: W.H.
1843 Freeman. 1844

1844 Gray, K. A., Zhao, L. & Emptage, M. 2006 Bioethanol. *Curr.*
1845 *Opin. Chem. Biol.* **10**, 141–146. (doi:10.1016/j.cbpa.2006.
02.035) 1846

1846 Griffith, L. G. & Naughton, G. 2002 Tissue engineering—
1847 current challenges and expanding opportunities. *Science*
1848 **295**, 1009–1014. (doi:10.1126/science.1069210) 1849

1849 Groisman, A., Lobo, C., Cho, H., Campbell, J. K., Dufour,
1850 Y. S., Stevens, A. M. & Levchenko, A. 2005 A microfluidic
1851 chemostat for experiments with bacterial and yeast cells.
1852 *Nat. Methods* **2**, 685–689. (doi:10.1038/nmeth784) 1853

1853 Guet, C. C., Elowitz, M. B., Hsing, W. & Leibler, S. 2002
1854 Combinatorial synthesis of genetic networks. *Science* **296**,
1466–1470. (doi:10.1126/science.1067407) 1855

1855 Guido, N. J., Wang, X., Adalsteinsson, D., Mcmillen, D.,
1856 Hasty, J., Cantor, C. R., Elston, T. C. & Collins, J. J. 2006
1857 A bottom-up approach to gene regulation. *Nature* **439**,
856–860. (doi:10.1038/nature04473) 1858

1858 Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M. F.,
1859 Liden, G. & Zacchi, G. 2006 Bio-ethanol—the fuel of
1860 tomorrow from the residues of today. *Trends Biotechnol.*
1861 **24**, 549–556. (doi:10.1016/j.tibtech.2006.10.004) 1862

1862 Hannon, G. J. 2002 RNA interference. *Nature* **418**, 244–251.
(doi:10.1038/418244a) 1863

1863 Hanson, D. A. & Ziegler, S. F. 2004 Fusion of green
1864 fluorescent protein to the C-terminus of granulysin alters
1865 its intracellular localization in comparison to the native
1866 molecule. *J. Negat. Results Biomed.* **3**, 2. (doi:10.1186/
1477-5751-3-2) 1867

1867 Hasty, J., Mcmillen, D. & Collins, J. J. 2002 Engineered gene
1868 circuits. *Nature* **420**, 224–230. (doi:10.1038/nature01257) 1869

1869 Hawking, S. W. 2001 *The universe in a nutshell*. New York,
1870 NY: Bantam Books. 1871

1871 Hong, J. W. & Quake, S. R. 2003 Integrated nanoliter
1872 systems. *Nat. Biotechnol.* **21**, 1179–1183. (doi:10.1038/
1873 nbt871) 1874

1874 Hooshangi, S., Thibierge, S. & Weiss, R. 2005 Ultrasensitivity
1875 and noise propagation in a synthetic transcriptional
1876 cascade. *Proc. Natl Acad. Sci. USA* **102**, 3581–3586.
(doi:10.1073/pnas.0408507102) 1877

1877 Hucka, M. et al. 2003 The systems biology markup language
1878 (SBML): a medium for representation and exchange of
1879 biochemical network models. *Bioinformatics* **19**, 524–531.
(doi:10.1093/bioinformatics/btg015) 1880

1880 Isaacs, F. J., Dwyer, D. J. & Collins, J. J. 2006 RNA synthetic
1881 biology. *Nat. Biotechnol.* **24**, 545–554. (doi:10.1038/
1882 nbt1208) 1883

1883

1891 Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D.,
 1892 Cantor, C. R. & Collins, J. J. 2004 Engineered riboregula-
 1893 tors enable post-transcriptional control of gene
 1894 expression. *Nat. Biotechnol.* **22**, 841–847. (doi:10.1038/
 1895 nbt986)

1896 Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. 2003
 1897 Prediction and measurement of an autoregulatory genetic
 1898 module. *Proc. Natl Acad. Sci. USA* **100**, 7714–7719.
 1899 (doi:10.1073/pnas.1332628100)

1900 Jacob, F. & Monod, J. 1961 Genetic regulatory mechanisms in
 1901 the synthesis of proteins. *J. Mol. Biol.* **3**, 318–356.

1902 Jeffries, T. W. 2006 Engineering yeasts for xylose metabolism.
 1903 *Curr. Opin. Biotechnol.* **17**, 320–326. (doi:10.1016/j.copbio.
 1904 2006.05.008)

1905 Joyce, G. F. 2004 Directed evolution of nucleic acid enzymes.
 1906 *Annu. Rev. Biochem.* **73**, 791–836. (doi:10.1146/annurev.
 1907 biochem.73.011303.073717)

1908 Kaern, M., Blake, W. J. & Collins, J. J. 2003 The engineering
 1909 of gene regulatory networks. *Annu. Rev. Biomed. Eng.* **5**,
 1910 179–206. (doi:10.1146/annurev.bioeng.5.040202.121553)

1911 Kholodenko, B. N. 2006 Cell-signalling dynamics in time and
 1912 space. *Nat. Rev. Mol. Cell Biol.* **7**, 165–176. (doi:10.1038/
 1913 nrm1838)

1914 Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner,
 1915 T. S., Cantor, C. R. & Collins, J. J. 2004 Programmable
 1916 cells: interfacing natural and engineered gene networks.
 1917 *Proc. Natl Acad. Sci. USA* **101**, 8414–8419. (doi:10.1073/
 1918 pnas.0402940101)

1919 Kolkman, J. A. & Stemmer, W. P. 2001 Directed evolution of
 1920 proteins by exon shuffling. *Nat. Biotechnol.* **19**, 423–428.
 1921 (doi:10.1038/88084)

1922 Korkegian, A., Black, M. E., Baker, D. & Stoddard, B. L. 2005
 1923 Computational thermostabilization of an enzyme. *Science*
 1924 **308**, 857–860. (doi:10.1126/science.1107387)

1925 Kramer, B. P. & Fussenegger, M. 2005 Hysteresis in a
 1926 synthetic mammalian gene network. *Proc. Natl Acad. Sci.*
 1927 *USA* **102**, 9517–9522. (doi:10.1073/pnas.0500345102)

1928 Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard,
 1929 B. L. & Baker, D. 2003 Design of a novel globular protein
 1930 fold with atomic-level accuracy. *Science* **302**, 1364–1368.
 1931 (doi:10.1126/science.1089427)

1932 Kuyper, M., Toirkens, M. J., Diderich, J. A., Winkler, A. A.,
 1933 Van Dijken, J. P. & Pronk, J. T. 2005 Evolutionary
 1934 engineering of mixed-sugar utilization by a xylose-
 1935 fermenting *Saccharomyces cerevisiae* strain. *FEMS*
 1936 *Yeast Res.* **5**, 925–934. (doi:10.1016/j.femsyr.2005.04.004)

1937 Lagasse, E., Shizuru, J. A., Uchida, N., Tsukamoto, A. &
 1938 Weissman, I. L. 2001 Toward regenerative medicine.
 1939 *Immunity* **14**, 425–436. (doi:10.1016/S1074-7613(01)
 1940 00123-6)

1941 Leonard, J. A., Wayne, R. K., Wheeler, J., Valadez, R.,
 1942 Guillen, S. & Vila, C. 2002 Ancient DNA evidence for Old
 1943 World origin of New World dogs. *Science* **298**, 1613–1616.
 1944 (doi:10.1126/science.1076980)

1945 Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B.,
 1946 Lavery, L. A., Levy, M., Davidson, E. A., Scouras, A.,
 1947 Ellington, A. D., Marcotte, E. M. & Voigt, C. A. 2005
 1948 Synthetic biology: engineering *Escherichia coli* to see light.
 1949 *Nature* **438**, 441–442. (doi:10.1038/nature04405)

1950 Liu, H., Schmidt, J. J., Bachand, G. D., Rizk, S. S., Looger,
 1951 L. L., Hellinga, H. W. & Montemagno, C. D. 2002 Control
 1952 of a biomolecular motor-powered nanodevice with an
 1953 engineered chemical switch. *Nat. Mater.* **1**, 173–177.
 (doi:10.1038/nmat761)

1954 Looger, L. L., Dwyer, M. A., Smith, J. J. & Hellinga, H. W.
 1955 2003 Computational design of receptor and sensor proteins
 1956 with novel functions. *Nature* **423**, 185–190. (doi:10.1038/
 1957 nature01556)

Mandal, M. & Breaker, R. R. 2004 Gene regulation by
 1958 riboswitches. *Nat. Rev. Mol. Cell Biol.* **5**, 451–463. (doi:10.
 1959 1038/nrm1403)

Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D. &
 1960 Keasling, J. D. 2003 Engineering a mevalonate pathway in
 1961 *Escherichia coli* for production of terpenoids. *Nat.*
 1962 *Biotechnol.* **21**, 796–802. (doi:10.1038/nbt833)

1963 Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. 1999
 1964 Expanded sequence dependence of thermodynamic par-
 1965 ameters improves prediction of RNA secondary structure.
 1966 *J. Mol. Biol.* **288**, 911–940. (doi:10.1006/jmbi.1999.2700)

1967 Mcmillen, D., Kopell, N., Hasty, J. & Collins, J. J. 2002
 1968 Synchronizing genetic relaxation oscillators by intercell
 1969 signaling. *Proc. Natl Acad. Sci. USA* **99**, 679–684. (doi:10.
 1970 1073/pnas.022642299)

1971 McNamara 2nd, J. O., Andrechek, E. R., Wang, Y., Viles,
 1972 K. D., Rempel, R. E., Gilboa, E., Sullenger, B. A. &
 1973 Giangrande, P. H. 2006 Cell type-specific delivery of
 1974 siRNAs with aptamer-siRNA chimeras. *Nat. Biotechnol.*
 1975 **24**, 1005–1015. (doi:10.1038/nbt1223)

1976 Morgan, R. A. et al. 2006 Cancer regression in patients after
 1977 transfer of genetically engineered lymphocytes. *Science*
 1978 **314**, 126–129. (doi:10.1126/science.1129003)

1979 Newman, J. D., Marshall, J., Chang, M., Nowroozi, F.,
 1980 Paradise, E., Pitera, D., Newman, K. L. & Keasling, J. D.
 1981 2006 High-level production of amorpho-4,11-diene in a
 1982 two-phase partitioning bioreactor of metabolically engi-
 1983 neered *Escherichia coli*. *Biotechnol. Bioeng.* **95**, 684–691.
 1984 (doi:10.1002/bit.21017)

1985 Nudler, E. & Mironov, A. S. 2004 The riboswitch control of
 1986 bacterial metabolism. *Trends Biochem. Sci.* **29**, 11–17.
 1987 (doi:10.1016/j.tibs.2003.11.004)

1988 Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. &
 1989 Van Oudenaarden, A. 2002 Regulation of noise in the
 1990 expression of a single gene. *Nat. Genet.* **31**, 69–73. (doi:10.
 1991 1038/ng869)

1992 Park, S. H., Zarrinpar, A. & Lim, W. A. 2003 Rewiring MAP
 1993 kinase pathways using alternative scaffold assembly
 1994 mechanisms. *Science* **299**, 1061–1064. (doi:10.1126/science.
 1995 1076979)

1996 Park, S., Yang, X. & Saven, J. G. 2004 Advances in
 1997 computational protein design. *Curr. Opin. Struct. Biol.*
 1998 **14**, 487–494. (doi:10.1016/j.sbi.2004.06.002)

1999 Pedraza, J. M. & Van Oudenaarden, A. 2005 Noise
 2000 propagation in gene networks. *Science* **307**, 1965–1969.
 2001 (doi:10.1126/science.1109090)

2002 Posfai, G. et al. 2006 Emergent properties of reduced-genome
 2003 *Escherichia coli*. *Science* **312**, 1044–1046. (doi:10.1126/
 2004 science.1126439)

2005 Quake, S. R. & Scherer, A. 2000 From micro- to nanofabrica-
 2006 tion with soft materials. *Science* **290**, 1536–1540. (doi:10.
 2007 1126/science.290.5496.1536)

2008 Rackham, O. & Chin, J. W. 2005a Cellular logic with orthogonal
 2009 ribosomes. *J. Am. Chem. Soc.* **127**, 17 584–17 585. (doi:10.
 2010 1021/ja055338d)

2011 Rackham, O. & Chin, J. W. 2005b A network of orthogonal
 2012 ribosome x mRNA pairs. *Nat. Chem. Biol.* **1**, 159–166.
 2013 (doi:10.1038/nchembio719)

2014 Rai, A. K. & Boyle, J. Forthcoming. Synthetic biology:
 2015 caught between property rights, the public domain, and
 2016 the commons. *PLoS Biol.*

Rao, C. V., Wolf, D. M. & Arkin, A. P. 2002 Control,
 2017 exploitation and tolerance of intracellular noise. *Nature*
 2018 **420**, 231–237. (doi:10.1038/nature01258)

Raser, J. M. & O'shea, E. K. 2004 Control of stochasticity in
 2019 eukaryotic gene expression. *Science* **304**, 1811–1814.
 2020 (doi:10.1126/science.1098641)

2017 Ro, D. K. *et al.* 2006 Production of the antimalarial drug
2018 precursor artemisinic acid in engineered yeast. *Nature* **440**,
2019 940–943. (doi:10.1038/nature04640) 2080

2020 Robertson, D. L. & Joyce, G. F. 1990 Selection *in vitro* of an
2021 RNA enzyme that specifically cleaves single-stranded
2022 DNA. *Nature* **344**, 467–468. (doi:10.1038/344467a0) 2081

2023 Rosenfeld, N. & Alon, U. 2003 Response delays and the
2024 structure of transcription networks. *J. Mol. Biol.* **329**,
2025 645–654. (doi:10.1016/S0022-2836(03)00506-0) 2082

2026 Rosenfeld, N., Elowitz, M. B. & Alon, U. 2002 Negative
2027 autoregulation speeds the response times of transcription
2028 networks. *J. Mol. Biol.* **323**, 785–793. (doi:10.1016/S0022-
2029 2836(02)00994-4) 2083

2030 Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz,
2031 M. B. 2005 Gene regulation at the single-cell level. *Science*
2032 **307**, 1962–1965. (doi:10.1126/science.1106914) 2084

2033 Roucou, X., Prescott, M., Devenish, R. J. & Nagley, P. 2000 A
2034 cytochrome c-GFP fusion is not released from mito-
2035 chondria into the cytoplasm upon expression of Bax in
yeast cells. *FEBS Lett.* **471**, 235–239. (doi:10.1016/S0014-
2036 5793(00)01404-6) 2085

2037 Schrama, D., Reisfeld, R. A. & Becker, J. C. 2006 Antibody
2038 targeted drugs as cancer therapeutics. *Nat. Rev. Drug
2039 Discov.* **5**, 147–159. (doi:10.1038/nrd1957) 2086

2040 Schwab, W. 2003 Metabolome diversity: too few genes, too
2041 many metabolites? *Phytochemistry* **62**, 837–849. (doi:10.
2042 1016/S0031-9422(02)00723-9) 2087

2043 Sedlak, M. & Ho, N. W. 2004 Production of ethanol from
2044 cellulosic biomass hydrolysates using genetically engi-
2045 neered *Saccharomyces* yeast capable of cofermenting
2046 glucose and xylose. *Appl. Biochem. Biotechnol.* **113-116**,
403–416. (doi:10.1385/ABAB:114:1-3:403) 2088

2047 Shav-Tal, Y., Darzacq, X., Shenoy, S. M., Fusco, D., Janicki,
2048 S. M., Spector, D. L. & Singer, R. H. 2004 Dynamics of
2049 single mRNPs in nuclei of living cells. *Science* **304**,
1797–1800. (doi:10.1126/science.1099754) 2089

2050 Sprinzak, D. & Elowitz, M. B. 2005 Reconstruction of genetic
2051 circuits. *Nature* **438**, 443–448. (doi:10.1038/nature04335) 2090

2052 Stephanopoulos, G. & Vallino, J. J. 1991 Network rigidity and
2053 metabolic engineering in metabolite overproduction.
2054 *Science* **252**, 1675–1681. (doi:10.1126/science.1904627) 2091

2055 Stetter, K. O. 1999 Extremophiles and their adaptation to hot
2056 environments. *FEBS Lett.* **452**, 22–25. (doi:10.1016/
2057 S0014-5793(99)00663-8) 2092

2058 Suess, B., Fink, B., Berens, C., Stentz, R. & Hillen, W. 2004 A
2059 theophylline responsive riboswitch based on helix slipping
2060 controls gene expression *in vivo*. *Nucleic Acids Res.* **32**,
1610–1614. (doi:10.1093/nar/gkh321) 2093

2061 Thorsen, T., Maerkl, S. J. & Quake, S. R. 2002 Microfluidic
2062 large-scale integration. *Science* **298**, 580–584. (doi:10.
2063 1126/science.1076996) 2094

2064 Tian, J., Gong, H., Sheng, N., Zhou, X., Gulari, E., Gao, X. &
2065 Church, G. 2004 Accurate multiplex gene synthesis from
2066 programmable DNA microchips. *Nature* **432**, 1050–1054.
2067 (doi:10.1038/nature03151) 2095

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

Tuerk, C. & Gold, L. 1990 Systematic evolution of ligands by
exponential enrichment: RNA ligands to bacteriophage T4
DNA polymerase. *Science* **249**, 505–510. (doi:10.1126/
science.2200121) 2096

Tyson, J. J., Chen, K. & Novak, B. 2001 Network dynamics
and cell physiology. *Nat. Rev. Mol. Cell Biol.* **2**, 908–916.
(doi:10.1038/35103078) 2097

Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake,
S. R. 2000 Monolithic microfabricated valves and pumps
by multilayer soft lithography. *Science* **288**, 113–116.
(doi:10.1126/science.288.5463.113) 2098

Urnov, F. D. *et al.* 2005 Highly efficient endogenous human
gene correction using designed zinc-finger nucleases.
Nature **435**, 646–651. (doi:10.1038/nature03556) 2099

Volfson, D., Marciniak, J., Blake, W. J., Ostroff, N.,
Tsimring, L. S. & Hasty, J. 2006 Origins of extrinsic
variability in eukaryotic gene expression. *Nature* **439**,
861–864. (doi:10.1038/nature04281) 2100

Wang, L., Brock, A., Herberich, B. & Schultz, P. G. 2001
Expanding the genetic code of *Escherichia coli*. *Science*
292, 498–500. 2101

Xu, L., Chen, H., Hu, X., Zhang, R., Zhang, Z. & Luo, Z. W.
2006 Average gene length is highly conserved in prokar-
yotes and eukaryotes and diverges only between the two
kingdoms. *Mol. Biol. Evol.* **23**, 1107–1108. (doi:10.1093/
molbev/msk019) 2102

Yokobayashi, Y. & Arnold, F. H. 2005 A dual selection
module for directed evolution of genetic circuits. *Nat.
Comput.* **V4**, 245–254. (doi:10.1007/s11047-004-7442-x) 2103

Yokobayashi, Y., Weiss, R. & Arnold, F. H. 2002 Directed
evolution of a genetic circuit. *Proc. Natl Acad. Sci. USA*
99, 16 587–16 591. (doi:10.1073/pnas.252535999) 2104

You, L. 2004 Toward computational systems biology. *Cell
Biochem. Biophys.* **40**, 167–184. (doi:10.1385/CBB:40:
2:167) 2105

You, L., Cox 3rd, R. S., Weiss, R. & Arnold, F. H. 2004
Programmed population control by cell–cell communica-
tion and regulated killing. *Nature* **428**, 868–871. (doi:10.
1038/nature02491) 2106

Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. 2006 Probing
gene expression in live cells, one protein molecule at a time.
Science **311**, 1600–1603. (doi:10.1126/science.1119623) 2107

Yura, T. & Nakahigashi, K. 1999 Regulation of the heat-shock
response. *Curr. Opin. Microbiol.* **2**, 153–158. (doi:10.1016/
S1369-5274(99)80027-7) 2108

Zhang, Z., Boccazzini, P., Choi, H. G., Perozziello, G., Sinskey,
A. J. & Jensen, K. F. 2006 Microchemostat-microbial
continuous culture in a polymer-based, instrumented
microbioreactor. *Lab. Chip.* **6**, 906–913. (doi:10.1039/
b518396k) 2109

Zuker, M. 2003 Mfold web server for nucleic acid folding and
hybridization prediction. *Nucleic Acids Res.* **31**, 3406–3415.
(doi:10.1093/nar/gkg595) 2110

2143	Author Queries	2206
2144	<i>JOB NUMBER:</i> 20060206	2207
2145	<i>JOURNAL:</i> RSIF	2208
2147		2209
2148	Q1 Please check the sense of the sentence 'For an overview of where these technologies interact with synthetic biology (figure 1)'. Would this be better to read as 'figure 1 illustrates an overview of where these technologies interact with synthetic biology'?	2210
2149		2211
2150		2212
2151		2213
2152		2214
2153		2215
2154	Q2 Please provide the year for the reference 'J. Tian (personal communication)'.	2216
2155		2217
2156	Q3 Please approve the edit of the sentence 'Up a level of abstraction from the DNA synthesis...' to 'One level of abstraction from the DNA synthesis...'.	2218
2157		2219
2158		2220
2159	Q4 Please note the edit of the term 'effecter' to 'effector' in the sentence 'RNA switches are advantageous in their fast response...'.	2221
2160		2222
2161		2223
2162	Q5 Please clarify 'custom make parts' in the sentence 'These examples demonstrate that the cellular engineer...'.	2224
2163		2225
2164		2226
2165	Q6 Please check whether 'behaviours' should be 'behaviour' in the line 'Such analyses are useful to determine how quantitative or qualitative circuit behaviours...'.	2227
2166		2228
2167		2229
2168		2230
2169	Q7 In the sentence 'In many cases, this does not significantly affect either protein's function', please confirm whether this would be better to read as 'In many cases, this does not significantly affect the function of either a target or a fluorescent protein'?	2231
2170		2232
2171		2233
2172		2234
2173		2235
2174	Q8 Please provide the year for the reference 'F. Balagadde (unpublished data)'.	2236
2175		2237
2176	Q9 Please approve the edit of the sentence '...one may imagine selecting a standard cell strain in which to quantify standard parts under standard conditions' to '...one may imagine selecting a standard cell strain, in which standard parts under standard conditions are to be quantified'.	2238
2177		2239
2178		2240
2179		2241
2180		2242
2181		2243
2182		2244
2183	Q10 References Rosenfeld et al. (2002) and Kobayashi et al. (2004) are provided in the list but not cited in the text. Please supply citation details or delete the references from the reference list.	2245
2184		2246
2185		2247
2186		2248
2187	Q11 Please check the year, volume number and page range for the reference 'Arnould et al. (2005)'.	2249
2188		2250
2189	Q12 Please update the year for the reference 'Rai & Boyle (forthcoming)'.	2251
2190		2252
2191		2253
2192		2254
2193		2255
2194		2256
2195		2257
2196		2258
2197		2259
2198		2260
2199		2261
2200		2262
2201		2263
2202		2264
2203		2265
2204		2266
2205		2267
		2268