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Biological research is experiencing an increasing focus predominantly on the application of
knowledge rather than on its generation. Thanks to the increased understanding of cellular
systems and technological advances, biologists are more frequently asking not only ‘how can I
understand the structure and behaviour of this biological system?’, but also ‘how can I apply
that knowledge to generate novel functions in different biological systems or in other
contexts?’ Active pursuit of the latter has nurtured the emergence of synthetic biology. Here,
we discuss the motivation behind, and foundational technologies enabling, the development
of this nascent field. We examine some early successes and applications while highlighting the
challenges involved. Finally, we consider future directions and mention non-scientific
considerations that can influence the field’s growth.
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1. INTRODUCTION

Imagine you have been charged with building a robot
capable of complex and autonomous operations in a
dynamic environment. What are the most advan-
tageous characteristics to build into such a machine?
To perform work, energy will be needed—renewable
energy extracted from the environment is ideal. To
respond with meaningful behaviour, information gath-
ering and possessing capabilities will be required. For
coordinated operations, communication with other
robots is essential. To maintain a long-term function,
a self-contained repair or reproduction system will be
necessary. To attempt some goals, the robot will need
to be a minuscule. To achieve economic feasibility,
production costs will have to be low. While all these
requirements are significant hurdles to the robotics
engineer on a budget, they are feats that life has
accomplished time and time again.

Consider one of the simplest forms of life, bacteria.
Only a few micrometres long bacteria are capable of
many of the above requirements, including, entering
minuscule environments, surviving on local nutrients
and responding to fluctuations in their environment
address for correspondence: CIEMAS 2345, 101 Science
m, NC 27708, USA (you@duke.edu).

—11/1/2007—13:41—SRIKANTH—267359—XML – pp. 1–18

123

124

125

126

ovember 2006
ecember 2006 1
with adaptive behaviour (such as chemotaxis (Falke
et al. 1997), altered nutrient utilization (Jacob &
Monod 1961) and temperature-dependent gene
expression (Yura & Nakahigashi 1999)). Many
bacterial species communicate in order to produce
coordinated behaviour (Bassler & Losick 2006) and
with doubling times as fast as 20 min, their reproduc-
tion capacity is remarkable.

In fact, an engineer building a device on a bacterial
‘chassis’ would only need to build one functioning
prototype, culture overnight in low-cost media and
return the next morning to obtain trillions of virtually
identical copies. In a sense, this is like programming a
minuscule but complex computer that can also repro-
duce. As appealing as this concept may seem, several
fundamental questions arise: what functions are we
capable of programming into a living organism? To
what extent will these functions be performed pre-
dictably and robustly? What is the best way to
implement a pre-defined design goal and what chal-
lenges and opportunities may arise? These are some of
the questions that the burgeoning field of synthetic
biology is beginning to address.

Over the past few years, synthetic biologists have
generated remarkable systems including: an expanded
genetic code in Escherichia coli (Wang et al. 2001);
various logic gates (Dueber et al. 2003; Rackham &
J. R. Soc. Interface
This journal is q 2007 The Royal Society
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Chin 2005a); rewired yeast mating and osmolarity
response circuitry (Park et al. 2003); bistable switches
in bacteria (Gardner et al. 2000; Isaacs et al. 2003);
yeast (Becskei et al. 2001) and mammalian cells
(Kramer & Fussenegger 2005); photographic bacteria
(Levskaya et al. 2005); genetic and metabolic oscillators
(Elowitz & Leibler 2000; Atkinson et al. 2003; Fung
et al. 2005); artificial communication in bacteria
(Bulter et al. 2004) and yeast (Chen & Weiss 2005);
and many other interesting and useful systems.

Although there is a debate about the scope and
boundaries of the field, some advocates supply that
‘synthetic biology’ is:
RS
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(A) the design and construction of new biological parts,
devices and systems and (B) the re-design of existing,
natural biological systems for useful purposes.

(www.syntheticbiology.org,
syntheticbiology.org:FAQ).
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It is worth examining this definition more closely.
Inherent in part (A) are engineering principles—the
notions of abstraction and hierarchy. One level of
abstraction consists of biological components with
simple albeit well-defined functions, operating under
defined conditions, i.e. parts. At a higher level of
abstraction, parts can be combined to form devices.
Similarly, devices come together to form systems on a
third level of abstraction. The basic premise is that an
individual researcher can work at one of these levels
without necessarily requiring to know the precise
mechanics of operation at another level (Endy 2005).

Part (B) states that biology is being redesigned for
‘useful purposes’. What purposes you might wonder?
The first purpose may be obvious, and it is the practical
application of biologically modified organisms in
human life. Although our ancestors did not possess
the advanced genetic tools available today, the litany of
domesticated species including fermentation yeasts,
crop grains and silkworms is a testament to the vast
utility of modified living organisms to humans.
However, modification of living organisms by
traditional means, i.e. artificial selection, is an incre-
mental and slow process with limited pay-offs during an
individual’s lifetime. For example, it has taken
approximately 15 000 years of domestication by selec-
tive breeding to turn wolves into present-day dogs
(Leonard et al. 2002), a process which grouped desirable
genes in particular breeds. Improvements in DNA
synthesis and genomic engineering methods have
enabled the introduction of genetic changes in rela-
tively short time frames. Such technologies will
engender the practical application of modified biologi-
cal systems to new areas, such as therapeutics, renew-
able energies and others. The practical applications of
modified biological systems represent the first useful
purpose behind a redesign.

Of course, even possessing large-scale DNA tech-
nology capable of making the changes needed to
produce a guide dog from a wolf is not enough. The
necessary DNA changes have to be known in advance in
order to be made. This is far from the case—especially
for a complex organism like the dog. Comparative
genomics can elucidate the differences between the
IF 20060206—11/1/2007—13:41—SRIKANTH—267359—XML – pp. 1–18
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organisms, but does not yield the full understanding
needed to prospectively say ‘If I want to program guide
animal functions into organism X, here are the changes
I will make and this is how those changes work.’ In the
venerable words of physicist Richard Feynman, ‘what I
cannot create, I do not understand’ (Hawking 2001).
The laws of physics and chemistry apply to living
systems just as they apply to non-living things, such as
mechanical engines. Yet, designing and constructing
even simple biological systems remain a major chal-
lenge, whereas mechanical engines can be predictably
engineered. Feynman would conclude that there must
exist fundamental gaps in our understanding of how
biological systems operate. Synthetic biology is explor-
ing these gaps in understanding by attempting to build
and apply such systems.

Scientific experiments are run under specific con-
ditions with the hope that the conclusions drawn will be
applicable in a broader context. The creation of
biological systems by using currently accepted (or
debated) principles would test the limitations and
applicability of those principles. Likewise, implemen-
tation of existing genes, proteins and pathways in non-
native settings can help elucidate their functions and
reveal unknown requirements for their operation.
Synthetic biologists therefore aim not only to produce
interesting and useful designs, but also to simul-
taneously develop a greater understanding of biological
components and design principles in general (Sprinzak &
Elowitz 2005). Therefore, the second, and equally
important, purpose of synthetic biology is to gain the
biological insight that arises from testing our knowledge
during the design and implementation process.
2. FOUNDATIONAL TECHNOLOGIES

Just as the development of the microscope made the
discovery of cells possible (Dunn & Jones 2004), new
technologies are providing the critical foundation
needed for synthetic biology. Here, we discuss the
following four major advances that have produced
enabling tools for experimentation and analysis in this
regard: DNA synthesis; parts and devices design and
optimization; systems modelling; and observational
capabilities. For an overview of where these tech-
nologies interact with synthetic biology (figure 1).
2.1. DNA synthesis

At the core of every living thing, dictating that
organism’s characteristics and behaviour is a string of
nucleotide bases—its DNA. To reprogram an organism,
that DNA needs to be altered or supplemented. Until
recently, DNA manipulations were almost exclusively
done in a ‘copy, cut and paste’ manner using
polymerases, restriction endonucleases and ligases,
respectively. While this enzymatic approach has
produced a wealth of scientific advances, implementing
a complicated biological design by these means is the
literary equivalent of writing a paper using a photo-
copier, scissors and a stick of glue. Recently, however,
biologists have received their metaphorical ‘type-
writer’. Tian and colleagues developed a large-scale

http://www.syntheticbiology.org
http://syntheticbiology.org:FAQ
http://syntheticbiology.org:FAQ
http://syntheticbiology.org:FAQ
http://syntheticbiology.org:FAQ
http://syntheticbiology.org:FAQ
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Figure 1. Interplay between engineering tools with a biological hierarchy. In order to simplify biological design, it is valuable to
use an abstraction hierarchy. DNA codes for ‘parts’ that interact with each other to form circuits. The totality of all circuits and
structures forms a single cell, which interacts with its neighbours and environment to form a population. At each level,
technologies have been developed to assist and enable design. Shown here are the major advances that significantly reduce
longstanding design, analysis and production barriers. Together, these technologies are helping to make integrated biological
design a reality.
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DNA synthesis method by using parallel oligonucleo-
tide synthesis on a programmable microfluidics chip,
followed by PCR amplification (Tian et al. 2004). In
order to reduce the error rate to 1 in 1394 bases, the
authors hybridized their ‘construction oligos’ against
complimentary ‘selection oligos’ and washed away
mismatches. Construction oligos were assembled into
larger genes using polymerase assembly multiplexing
(PAM), an overlap PCR-based method. Using their
chip-based technology, the authors simultaneously
synthesized and optimized all 21 genes encoding the
30S ribosomal subunit from E. coli.

In a different study, Jacobson and co-workers
developed a method that can further improve the
removal of error-containing DNA fragments (Carr et al.
2004). Using this method, which exploits the gel
mobility shift apparent whenMutS binds a mismatched
double-stranded DNA, they were able to obtain an
error rate as low as 1 in 10 000 (the average length of a
prokaryotic gene is 924 bp, while that of a eukaryotic
gene is 1346 bp; Xu et al. 2006). By applying these and
other technologies, commercial companies are now able
to offer large-scale (multi-kilobase and up) DNA
synthesis for under $1, a base with a two- to four-
week turnaround time. Whereas these prices do not
make a 10 kb construct inexpensive for most research-
ers, they imply that commercial synthesis has begun to
rival the equipment, materials, labour and validation
costs incurred by traditional cloning and construction
means for select applications. It may be possible to
further reduce these costs by 10–100-fold, i.e. 1–10
cents per base, within the next decade by fully
automating and streamlining new high-throughput
techniques (J. Tian, personal communication).

Total DNA synthesis can be used to alter or improve
the sequences being built. In traditional cloning,
targeted mutational changes are made only to small
RSIF 20060206—11/1/2007—13:41—SRIKANTH—267359—XML – pp. 1–18
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regions (approx. 20 bases) at once. Furthermore, each
region altered imposes additional experimental steps.
DNA synthesis methods, however, can synthesize an
altered sequence with no more effort than that
necessary to synthesize a wild-type sequence of the
same length. For example, a protein-coding sequence
can be matched with regard to codon usage in the host
organism where it will be expressed. In this case, the
sequence of amino acids in a protein is left unaltered by
the modification, but translation efficiency can be
improved by using codons whose cognate tRNAs are
more abundant. Similarly, the sequence can be altered
to remove or create mRNA secondary structures
without changing the resulting amino acid sequence.
Furthermore, a gene whose sequence is known, but
whose DNA is hard to obtain, can be easily synthesized.
2.2. Design and optimization of parts

One level of abstraction from the DNA synthesis and
manipulation is the parts production, which can be
accomplished through either rational design or directed
evolution. Recently, improved algorithms and
processor power have allowed computational design
efforts to achieve new milestones in reprogramming the
function of many well-characterized natural proteins.
In a series of studies integrating both computation and
experiments, the Hellinga laboratory succeeded in
introducing an allosteric control switch into the
proton-ATP pump (Liu et al. 2002); retooling sugar-
sensing receptors to bind novel ligands, such as lactate,
trinitrotoluene (TNT) and serotonin (Looger et al.
2003), and converting a receptor into a functional triose
phosphate isomerase enzyme (TIM), catalysing a 105–
106-fold rate improvement over the uncatalysed
reaction (Dwyer et al. 2004). Significantly, they even
demonstrate that designed parts are active in vivo and
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can be used to produce more complex systems. The
TNT receptor and a designed Zn receptor were shown
to induce gene expression in response to exogenous
ligands when implemented in some of the earlier
reported examples of synthetic signalling pathways
(Dwyer et al. 2003; Looger et al. 2003). Likewise, the
TIM enzyme was sufficiently active to complement its
wild-type version and restore viability under gluconeo-
genic conditions.

Computational design has also found applications
beyond altering the specificity or the enzymatic
function. For example, the Baker laboratory has
designed a new protein that folds to form a novel
structure—matching their modelling predictions
(Kuhlman et al. 2003). They also apply their compu-
tational methods to increase the thermostability of an
enzyme by identifying key mutations. When some
mutations were applied in concert, the result was a
30-fold increase in half-life at 508C (Korkegian et al.
2005). The examples here illustrate altered specificity,
novel functions and structures, improved stability and
introduction of allosteric control. They highlight some
of the contributions that computational protein design
has made for parts generation and improvement. While
we have only drawn examples from two research
groups, computational protein design is a vast and
growing field, with important contributions made by
numerous other laboratories (Park et al. 2004).

Applying rational design to parts alteration or
creation is advantageous, in that it cannot only
generate products with defined function, but it can
also produce biological insights into how the designed
function comes about. However, it requires prior
structural knowledge of the part, which is frequently
unavailable. Directed evolution is an alternative
method that can effectively address this limitation by
allowing parts engineering without design. In essence,
directed evolution begins with the generation of a
library containing many different DNAmolecules, often
by error-prone DNA replication, DNA shuffling or
combinatorial synthesis. The library is then subjected
to high-throughput screening or selection methods that
maintain a link between genotype and phenotype in
order to enrich the molecules that produce the desired
function. The process is then iterated to approach a
desired endpoint (Arnold 2001; Kolkman & Stemmer
2001; Joyce 2004). A recent example of parts creation
by directed evolution is the expansion and alteration of
LuxR specificity for acyl-homoserine lactone ligands
(Collins et al. 2005, 2006). LuxR is a transcriptional
activator from the marine bacteria Vibrio fischeri, and
it is naturally responsive to the signalling molecule
3OC6HSL. Collins et al. first employed a screening
scheme to identify mutations that broadened the
binding specificity of LuxR to other small molecules
in the same class as 3OC6HSL (Collins et al. 2005).
They then used a dual-selectionmethod (Yokobayashi &
Arnold 2005) to redirect LuxR specificity to one of those
molecules, C10HSL (Collins et al. 2006). The result was
a new protein that responds to the second chemical, but
no longer to the first. These parts may be particularly
beneficial to designers desiring multiple channels of
simultaneous communication between cells. Directed
RSIF 20060206—11/1/2007—13:41—SRIKANTH—267359—XML – pp. 1–18
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evolution can also be applied at other levels of biological
hierarchy, for example, to evolve entire gene circuits
(Yokobayashi et al. 2002).

Rational design and directed evolution should not be
viewed as opposing methods, but as alternate ways to
produce and optimize parts, each with their own unique
strengths and weaknesses. Directed evolution requires a
high-throughput way to both screen and select for a
desired function and that functional mutants exist in
the sequence space sampled. This second constraint
becomes less likely as the desired function diverges
further from the initial function. On the other hand,
while rational design strategies can make multiple
changes or large-scale alterations that incorporate
scientific knowledge, these strategies are rarely precise
enough to finely tune the system behaviour. Further-
more, it is difficult to know if additional optimization is
possible when employing rational design. For these
reasons, both methods can and should be used in
conjunction and will hopefully continue to be applied in
unison during the years to come.

Recent years have witnessed increasing interest in
using parts based on RNA for intricate control of
gene expression (Davidson & Ellington 2005; Isaacs
et al. 2006). One particular line of research has been
largely inspired from metabolite-controlled ribos-
witches prevalent in nature (Mandal & Breaker
2004; Nudler & Mironov 2004). RNA switches are
advantageous in their fast response, broad applica-
bility and chemical nature. RNA switches contain a
ligand-binding region, or aptamer domain, that
controls the function of an effector domain through
binding-induced conformational changes. Strategies
for the evolution of RNA aptamers and functional
RNAs were developed early on (Ellington & Szostak
1990; Robertson & Joyce 1990; Tuerk & Gold 1990)
due to the fact that the same molecule plays both
functional and information-encoding roles (i.e. the
genotype–phenotype link required for directed
evolution schemes is intrinsic to the molecule). This
allows the generation of a library directly from the
products of a competitive screen in the previous
round. Furthermore, the entire selection, amplifi-
cation and iteration procedure can be economically
accomplished in vitro. The chemical nature of RNA,
with four bases possible at each position, means that
a higher percentage of available sample space can be
covered while evolving an RNA molecule than a
protein of similar length (20 amino acid possibilities
per position). Additionally, the interactions within an
RNA molecule are largely driven by complementary
base pairing. As a result, relatively accurate methods
for the secondary structure prediction of RNA have
been developed and are widely used (Mathews et al.
1999; Zuker 2003). Secondary structure information
is valuable, because it can allow a researcher to make
rationally guided changes.

In a recent work from the Smolke group (Bayer &
Smolke 2005), switches were developed that exposed an
antisense stem sequence upon binding a ligand, produ-
cing a riboregulator. Ligands, such as theophylline,
controlled switches that turned on gene expression, as
well as switches that turned off gene expression. These
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switches were shown to be tunable by making simple
changes to the RNA sequence guided by thermo-
dynamic properties. Multiple switches functioned
independently in yeast even when binding similar
molecules. Switches such as these may be useful in
sensing cellular conditions and could also act as
feedback mechanisms for tuning metabolic pathways
in response to the depletion or accumulation of
reactants, intermediates or products. Gallivan and
colleagues demonstrate a synthetic RNA switch that
is functional in prokaryotes and can be applied in
screening or selection schemes that tie in vivo levels of
small molecules to a reporter gene or cell survival,
respectively (Desai & Gallivan 2004). In this manner,
one could screen enzyme libraries for a desired catalytic
function. Inversely, if the small chemical is supplied,
then a library of riboswitches could be screened for
binders that alter gene expression. Suess and
colleagues, who first described a rationally designed
in vivo RNA switch, implement it in such a way that it
functions as a logic gate with another ligand, xylose
(Suess et al. 2004). Perhaps, the best-known form of
gene regulation by RNA, however, is the role of
interfering RNA (Hannon 2002). Yokoboyashi and
colleagues show that it is possible to modulate shRNA
activity through the action of a small chemical by
fusing the shRNA to an aptamer responding to the
chemical (An et al. 2006).

Synthetic riboregulators need not be ligand con-
trolled. Collins et al. demonstrate a general method to
introduce RNA-mediated post-transcriptional
regulation into prokaryotic genes (Isaacs et al. 2004).
They introduced a short sequence between the
promoter and ribosome-binding site that when trans-
lated into mRNA folds into a hairpin with the adjacent
ribosome-binding site, sequestering the site and pre-
venting translation. Translation can be restored by
expressing a trans-acting RNA that binds the hairpin
and forms a more stable structure, which frees the
ribosome-binding site.

These examples demonstrate that the cellular
engineer of the future will not be restricted only to
simply combine the catalogue of known biological
parts, but will also have the tools needed to supplement
natural parts with custom make parts for specific
applications.

2.3. Modelling-guided circuit engineering

The engineering process usually involves multiple
cycles of design, optimization and revision (box 1 and
figure 2). This is particularly apparent in the process of
constructing gene circuits. As the number of interacting
parts and reactions increases, it becomes more difficult
to intuitively predict circuit behaviour. Towards these
ends, mathematical modelling is a useful design tool, in
particular, for systems with complex dynamics, such as
bistability and oscillations. The importance of math-
ematical modelling has been increasingly appreciated,
as evidenced by its extensive application in systems
biology as a way to decipher ‘design principles’ of
natural biological systems (Asthagiri & Lauffenburger
2000; Tyson et al. 2001; Gilman & Arkin 2002; You
RSIF 20060206—11/1/2007—13:41—SRIKANTH—267359—XML – pp. 1–18
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2004). In comparison, the utility of modelling in
synthetic biology seems even more dominant (Hasty
et al. 2002; Kaern et al. 2003).

Various mathematical formulations can be used to
model gene circuits. At the population level, gene
circuits can be modelled using ordinary differential
equations (ODEs). In an ODE formulation, the
dynamics of the interactions within the circuit are
deterministic. That is, given the same initial condition
and numerical configurations, different rounds of
simulations will lead to exactly the same results. In
other words, the ODE formulation ignores the
randomness intrinsic to cellular processes and is
convenient for circuit designs that are thought to be
less affected by noise or when the impact of noise is
irrelevant. For instance, ODE models have been used
to guide experimental efforts to program population
dynamics in the temporal domain (You et al. 2004;
Balagadde et al. 2005) or the spatial domain (Basu
et al. 2004, 2005). Importantly, an ODE model
facilitates further sophisticated analyses, such as
sensitivity analysis and bifurcation analysis. Such
analyses are useful to determine how quantitative or
qualitative circuit behaviours will be impacted by
changes in circuit parameters; this has been almost a
standard practice in engineering of most gene circuits
accomplished so far (box 1). For instance, in designing
a bistable toggle switch, bifurcation analysis was used
to explore how qualitative features of the circuit may
depend on reaction parameters (Gardner et al. 2000).
Results of the analysis were used to guide choice of
genetic components (genes, promoters and ribosome-
binding sites) and growth conditions to favour a
successful implementation of designed circuit function.

In a single cell, however, a gene circuit’s dynamics
often involve small numbers of interacting molecules.
Such small numbers will result in highly noisy
dynamics even for expression of a single gene (Elowitz
et al. 2002; Ozbudak et al. 2002). For many gene
circuits, the impact of such cellular noise may be
critical and needs to be considered. This can be done
using stochastic models (Rao et al. 2002). Different
rounds of simulation using a stochastic model will lead
to different results each time, which presumably reflect
aspects of noisy dynamics inside a cell. For synthetic
biological applications, the key of such analysis is not
necessarily to accurately predict the exact noise level
at each time point. This is not possible even for the
simplest circuits due to the ‘extrinsic’ noise component
for each circuit (Elowitz et al. 2002). Rather, it is a
way to determine to what extent the designed function
can be maintained and, given a certain level of
uncertainty or randomness, to what extent additional
layers of control can minimize or exploit such
variations. For instance, a number of computational
studies have been conducted to analyse the potential
of cell–cell communication to synchronize intrinsically
noisy and unreliable oscillators (Mcmillen et al. 2002;
Garcia-Ojalvo et al. 2004).

Mathematical models, either stochastic or determi-
nistic, can be digitally ‘evolved’ in silico to generate
optimal circuit designs that satisfy a particular
objective. Francois and Hakim used genetic algorithms



Box 1.

A recipe for engineering gene circuits (also see figure 2)

Design

(i) Determine the design goal

For the purposes of this tutorial we will attempt to construct a population of cells that restricts its cell density below that

imposed by nutrient limitations (You et al. 2004). The implementation discussed below is a revised version (Balagadde

et al. 2005).

(ii) Pick suitable host organisms/strains

Key characteristics to consider here are: ease of genetic manipulation, growth rate, survivability under the desired

conditions, and endogenous machinery you wish to exploit. E coli could be used for this application.

(iii) Identify necessary ‘parts’

Available places to draw from include the literature, genome sequences, colleagues, and the MIT registry

(The_BioBricks_Foundation). Recall that: (i) Parts need not be from the host organism. While native parts are likely

to function properly, they can lead to crosstalk with endogenous systems. (ii) Parts need not exist; they can be developed by

rational design or directed evolution. (iii) The better characterized the parts, the easier your job will be. (iv) It is

advantageous to include parts as reporters. In this tutorial we will pick the quorum sensing genes luxR and luxI, as well as

the toxin gene (CcdB) from F plasmid segregation.

Modeling

(iv) Build a mathematical model

Start with the simplest model that can capture the circuit dynamics (for example a simplifying assumption might be to

assume a protein’s production rate depends on a transcription factor rather than explicitly modeling mRNA production,

translation, and decay).

(v) Explore circuit dynamics in silico

Address questions like: can the network architecture give you the function you want?What parameters are most critical for

success? How do circuit dynamics change with parameters?

Implementation, testing, and debugging

(vi) Determine the DNA implementation of your circuit.

In our case we will implement our circuit on a plasmid and need decide on copy number, what promoters, RBSs,

transcription terminators, and perhaps degron tags to use. Anther choice at this time is to decide if any components need to

be expressed together on a polycistronic RNA. In this example, the circuit is implemented in a medium copy number

plasmid (p15a origin) which the luxR and luxI gene are co-expressed by a Plac/ara promoter. The CcdB gene is controlled by

a PluxI promoter. Kanamycin resistance is used as a selection marker.

(vii) If modeling indicates that a particular parameter is critical, build multiple versions

It is rare for all parameters to be perfectly balanced on the first experimental implementation. Designing multiple circuits

at once to sample a critical parameter space can increase the chance for initial success. It may also yield interesting

information about whether that particular parameter is truly critical.

(viii) Test your circuit and decide whether to retest, revise, or redesign

If it works as predicted you can continue to fully characterize it. If not, can you fit your model to explain the behavior that

is observed? What parameters may need altering to generate the desired function? At this point you can: (i) redesign the

circuit to address critical parameter changes, and perhaps ‘fine tune’ the circuit function by directed evolution; or (ii) test

the circuit in other strains or growth conditions.

A working design usually requires multiple rounds of iteration of steps listed above, which is often the most time consuming

portion of biological design.
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to design gene regulatory networks that exhibited
hysteresis or oscillations (Francois & Hakim 2004).
Initially, a pool of gene circuits was constructed from
basic reactions representing activation, repression and
post-translational modification. These circuits were
subsequently evolved using numerical simulations to
obtain a desired output by repeated rounds of digital
‘mutations’ and functional ‘screening’. Several unique
designs were generated that satisfy each design goal.
These designs could serve as alternatives to consider,
model or test during the circuit engineering cycle.

One of the most exciting aspects of synthetic biology
is the multiple avenues being used to address questions.
While some researchers may only apply a particular
method for a given application, the domain as a whole
RSIF 20060206—11/1/2007—13:41—SRIKANTH—267359—XML – pp. 1–18
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will benefit from the use of these complementary
approaches. For example, a simple linear cascade can
be implemented using transcriptional regulation or
reversible protein modification, both of which are
prevalent in nature. Implementation by transcriptional
control is appealing, because it is generally easier to
stitch multiple DNA elements together. However,
multi-component transcriptional cascades can intro-
duce a significant time delay, as shown by Hooshangi
et al. (2005). In this work, a one-stage cascade reached
its half-maximal activation in minutes, whereas a three-
stage cascade took several hours. Rosenfeld & Alon
found that long transcriptional cascades are rare in the
sensory systems of relatively short lived E. coli and
Saccharomyces cerevisiae (Rosenfeld & Alon 2003).
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Figure 2. The typical process for engineering gene circuits (see
box 1 for more details).
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Protein modification-based circuits can offer much
faster temporal response (Kholodenko 2006). As the
field matures, it is probable that synthetic circuits, like
nature, will integrate both DNA and protein regulatory
logic in their design. The combination will exploit
advantages of each method while mitigating their
weaknesses. These choices will require mathematical
modelling to ensure that the circuits can perform on the
desired time-scale for a particular operation.

In most attempts to engineer gene circuits, math-
ematical models are often purposefully simplified to
capture the qualitative behaviour of the underlying
systems. Simplification is beneficial partially due to
the limited quantitative characterization of circuit
elements, one limitation that the BioBricks project
aims to address (The BioBricks Foundation, Registry
of Standard Biological Parts.), and partially because
simpler models may better reveal key design con-
straints. The caveat, however, is that a simplified
model may fail to capture richer dynamics intrinsic to
a circuit. When engineering a population controller,
we built a highly simplified kinetic model to capture
the essence of the circuit dynamics, including cell
growth, signal accumulation, killer protein accumu-
lation and subsequent cell killing. The model predicts
that the system will always lead to a stable regulated
state, and this prediction was supported by the
observations made in batch cultures (You et al.
2004). Yet, later, we observed sustained oscillations
when cells expressing the circuit were grown in a
microchemostat (Balagadde et al. 2005). One way to
reconcile the experimental and modelling results was
to introduce an extra step of regulation in our model,
which indeed resulted in sustained oscillations for
biologically feasible parameters. We note that still
more layers of regulation are involved, further
complicating the modelling analysis (figure 3).
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2.4. Culturing and monitoring technologies

To determine if a synthetic circuit works as designed,
one must be able to test it and observe its dynamics.
These tasks have benefited from the rapid development
of improved culturing and observational technologies.
An ideal method for monitoring cellular dynamics over
time should be easy to perform and should not
significantly affect the properties being measured. One
step towards this ideal has been the engineering of
fluorescent protein variants (Giepmans et al. 2006).
These proteins are genetically encoded and mature to
functionality without requiring cofactors. Each variant
fluoresces with a specific visible wavelength upon
excitation, allowing multiple variants to be discerned
in one cell.

Fluorescent proteins can report on the protein levels
by directly creating translational fusions or indirectly
creating transcriptional fusions. A translational fusion
is made by inserting a fluorescent protein into the
reading frame of the target protein resulting in the
translation of the fluorescent protein and target protein
as one molecule. That is, one can tag a target protein
with a fluorescent tail. In many cases, this does not
significantly affect either protein’s function. A tran-
scriptional fusion is made by co-expressing a fluorescent
protein and a target protein by placing each behind the
same promoter. While this strategy reports on
promoter activity, a key determinant of intracellular
levels, it fails to capture any post-transcriptional or
post-translational regulation, such as the action of
regulatory RNAs or proteases. With both transcrip-
tional and translational fusions, fluorescence measure-
ments are non-invasive to live cells, and the process can
be automated for long-termmeasurements. Fluorescent
proteins therefore represent an elegant solution for
monitoring in vivo protein levels. Caution must be
exercised with translational fusions, however, because
even if the fluorescent tag does not alter the target
protein’s function per se, it may significantly impact its
localization. Although many of such cases are unre-
ported, the literature is spotted with examples of mis-
localized or mis-transported fluorescent fusion proteins
(Roucou et al. 2000; Hanson & Ziegler 2004). This is an
important issue not only for studies that explore
protein trafficking, but also for any system where
altered localization will affect function.

A particularly appealing application of fluorescent
proteins is to monitor single-cell dynamics in real time
through optical microscopy. Single-cell measurements
are critical for revealing heterogeneity in gene
expression or differences in other phenotypic traits
between the cells that are often masked in population-
level measurements. In one of the earliest synthetic
circuits published, Elowitz & Leibler built a circuit
capable of producing oscillations in gene expression,
but it was only through the microscopic tracking of
individual lineages of bacteria that the oscillations
became truly apparent (Elowitz & Leibler 2000).
Similar techniques were used to characterize other
oscillators implemented later (Atkinson et al. 2003;
Fung et al. 2005). Recently, single-cell measurements
have become the workhorse for a series of elegant
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Figure 3. Complexity and uncertainty in a biological circuit design. Although we can build and model the circuit from box 1, it is
remarkably difficult to capture even all the known interactions (let alone the unknown interactions). In our model, we have a
single killing term that sets the rate of cell death proportional to the product of the killing rate constant, CcdB level and cell
number. In reality, the situation is far more muddled. CcdB operates on DNA gyrase in a manner whose mechanistic details are
still open to debate. The downstream effects of CcdB are plural and interrelated, and each of these involves many components.
For example, the SOS response involves over a dozen players. Attempting to incorporate all the partially understood
downstream effects would complicate the model with no guarantee of improving its accuracy. Nevertheless, by omitting them, we
make the implicit assumption that they do not affect system dynamics.
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experimental studies aimed at deciphering the origin
and characteristics of cellular noise (Elowitz et al.
2002; Ozbudak et al. 2002; Blake et al. 2003; Raser &
O’shea 2004; Hooshangi et al. 2005; Pedraza & Van
Oudenaarden 2005; Rosenfeld et al. 2005; Austin et al.
2006; Guido et al. 2006; Volfson et al. 2006).

Remarkably, measurement capabilities are continu-
ing to improve in resolution, as tools to track single
molecules in vivo have also been developed. Building on
previous mRNA visualization techniques (Bertrand
et al. 1998), it is now possible to track individual
mRNAs in vivo by using multiple fluorescent mRNA-
binding proteins (Fusco et al. 2003; Golding & Cox
2004; Shav-Tal et al. 2004). Yu et al. show that it is even
possible to detect a single fast maturing fluorescent
protein by targeting it to the membrane (Yu et al.
2006). These detection methods improve researchers’
abilities to quantify the abundance and localization of
cellular components. Researchers can then determine
when and where the experimental system deviates from
their expectations, improving their ability to test and
troubleshoot designs.

It is a rare and joyous occasion when a synthetic
genetic circuit actually works as expected for the first
time. The laborious and time-consuming process of
characterizing and debugging biological programs will
become more significant as the circuits increase in
complexity. This process is, by and large, the rate-
limiting step for engineering gene circuits that program
sophisticated dynamic behaviour (box 1). An import-
ant advance in this area is the miniaturization of
characterization processes through microfluidics—the
science and technology of systems that manipulate
small amounts of fluids (10K9–10K18 l), using micro-
sized channels (Quake & Scherer 2000; Hong & Quake
2003). Microfluidic metering enables ultra-low con-
sumption of biological samples and reagents, allowing
high-throughput research at low cost with short
analysis time. Microfluidic miniaturization also facili-
tates automation and integration of complex chemical
or biological procedures into a single process that is
faster, more precise and more reproducible than its
manual counterparts. Pioneered by the Quake labora-
tory, the development of actuatable pneumatic valves
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through multilayer soft lithography (MSL) has facili-
tated the design of complicated devices equipped with
pumps, fluidic isolation and mixers (Unger et al. 2000).

As a proof of concept for synthetic biological
application, Balagadde and colleagues devised and
implemented a miniaturized 16 nl bioreactor, called a
microchemostat, that enables automated culturing and
monitoring of small populations (102–104) of bacteria
for hundreds of hours with single-cell resolution
(Balagadde et al. 2005). By reducing the reactor volume
by a factor of 105 when compared with traditional
chemostats, microchemostat populations undergo pro-
portionately fewer divisions per hour, which suppress
the total mutation rate of the population. This, in turn,
effectively insulates the micro-cultures from rapid
evolution, prolonging monitoring of genetically homo-
geneous populations. The microchemostat system is
automated by the custom software that controls
periodic media dilution, culture mixing, image acqui-
sition and image analysis. Its unique design also allows
multiple experiments to be run in parallel on the same
chip (figure 4). In addition to the measurements of cell
density and morphology, a recently improved chip
design enables measurements of gene expression
dynamics reported by fluorescence or luminescence
(F. Balagadde, unpublished data).

In another microfluidics application, Thorsen and
colleagues created a ‘comparator’ capable of screening
individual cells for desired functionality in a high-
throughput manner. In this device, two reagents can be
separately loaded into 256 pairs of subnanolitre
reaction chambers. Adjacent chambers are united
allowing the reagents to mix and react. The products
of each reaction can then be selectively recovered. This
system was used to perform a high-throughput detec-
tion of single bacterial cells expressing recombinant
cytochrome c peroxidase (Thorsen et al. 2002).

Fu and colleagues fabricated a microfluidic fluor-
escence-activated cell sorter (FACS) to sort live
fluorescent E. coli cells. Compared with the conven-
tional FACS machines, the microfluidic device allows
for more sensitive optical detection of bacterial cells as
well as DNA strands, and it is also capable of ‘reverse’
sorting. Reverse sorting is a procedure where cells are



Figure 4. A microfluidic chip with six parallel microchemostat reactors, used to study the growth of microbial populations. The
coin is 18 mm in diameter.
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scanned at a high flow rate until a fluorescent cell is
detected. Flow is then stopped and reversed, allowing
the cell to be measured a second time and diverted into
a collection tube. Reverse sorting is particularly useful
for isolating rare cells or making multiple measure-
ments on a single cell (Fu et al. 2002).

The aforementioned microfluidic devices can be used
in stand-alone applications or as part of an integrated
system. They are also disposable, which eliminates any
cross-contamination in between the runs. These and
many other microfluidic systems (Cookson et al. 2005;
Groisman et al. 2005; Zhang et al. 2006) being actively
developed will become important tools for synthetic
biologists (El-Ali et al. 2006).
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3. APPLICATIONS

3.1. Green chemistry

Natural biological systems are astonishing production
factories capable of synthesizing an impressive array of
chemicals with relatively high yields. For example, the
plant metabalome alone is estimated to contain over 1
million unique chemical species (Schwab 2003).
Furthermore, all of these diverse chemical species are
synthesized under ‘gentle’ conditions in the cells (i.e. in
aqueous solutions and at mild temperatures). In
contrast, current methods for organic synthesis often
rely upon exotic solvents, reaction conditions and
catalysts. Not only are such methods expensive, but
they can also produce a variety of undesirable and toxic
waste products. These problems can be alleviated
through development of novel biological catalysts and
synthetic metabolic pathways. Such advances could
usher in a new era of environmentally friendly or ‘green’
RSIF 20060206—11/1/2007—13:41—SRIKANTH—267359—XML – pp. 1–18
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chemistry by breaking our dependence on toxic solvents
and catalysts while decreasingwaste product formation.

It would be naive to think that custom metabolic
synthesis will replace the majority of organic chemical
synthesis in the near future. However, it can have an
immediate impact on several areas. One such example
is the production of artemisinic acid, a precursor to the
antimalarial drug artemisinin. Originally discovered as
a Chinese herbal therapy, artemisinin is currently
isolated from the shrub Artemisia annua, but it is too
expensive for most populations where malaria is a
problem. Total chemical synthesis is difficult and
costly, but researchers have recently reported the
production of up to 100 mg lK1 artemisinic acid from
an engineered laboratory yeast strain (Ro et al. 2006).
To engineer the yeast strain, Keasling and colleagues
first increased precursor production by manipulating
the farnesyl pyrophosphate (FPP) pathway to augment
FPP yield. They additionally downregulated a gene
that diverts FPP to a sterol-producing pathway. They
then added genes from A. annua to convert FPP to
amorphadiene and subsequently convert amorphadiene
to artemisinic acid. The authors report a simple
purification scheme to recover the artemisinic acid,
which can then be converted to artemisinin in a
relatively straightforward chemical reaction. This
would appear to be a vast improvement over their
complementary work in E. coli that reported the
introduction of a metabolic pathway capable of produ-
cing up to 24 mg lK1 of amorphadiene, an artemisinic
acid precursor (Martin et al. 2003). It has recently been
reported, however, that the engineered E. coli strain
produces higher levels (500 mg mlK1) than previously
measured (Newman et al. 2006). Measurement errors
were due to the high volatility of amorphadiene in
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aqueous solutions. It therefore remains to be seen which
organism will ultimately be the most useful as a
bioreactor for this application. That virtually the
same metabolic pathway can be built in two organisms
from different taxonomic domains is perhaps an
indication of the potential plasticity of cellular metab-
olism in the hands of a skilled practitioner.

Artemisinic acid is not the first example of a
therapeutic molecule produced in a cell culture. Many
drugs currently on the market including insulin,
erythropoietin and therapeutic antibodies are also
made in cellular bioreactors. However, artemisinic
acid is distinctly different from most biologically
cultivated therapeutics, because it is not a protein
and requires many more metabolic steps than simple
transcription and translation. All these steps must be
carefully regulated and balanced to control metabolic
fluxes and maximize yield. This type of synthetic
biology is deeply rooted in what many might call
metabolic engineering (Bailey 1991; Stephanopoulos &
Vallino 1991). Some may even argue that metabolic
engineers have been doing synthetic biology far before
the label became well established.
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3.2. Therapeutics

Drug production is only one example of how synthetic
biology can contribute to medicine. In this age of shots
and pills, it is easy to forget that our bodies’ defence
system is predominantly composed of cells. Billions of
immunological cells patrol our bodies at any given time
on the lookout for antigens that indicate foreign cells or
abnormal function. A key feature of our immune system
is that it is predominantly targeted to the particular
offending pathogens or region of infection through the
use of cell surface receptors and signalling molecules
(Goldsby 2003). Most drugs, however, are often taken
systemically and can be damaging to unintended
targets. For example, many chemotherapy treatments
aim to control the fast proliferating cells in the cancer,
but inadvertently destroy the rapidly dividing hair
follicles and cells of gastric linings, resulting in hair loss
and digestion problems.

Cells can be engineered to recognize specific targets
or conditions in our bodies that are not naturally
recognized by the immune system. Although some
drugs can also be targeted to specific locations through
aptamer (Mcnamara et al. 2006) or antibody conju-
gation (Schrama et al. 2006), a cell has the advantage of
being able to interpret and respond to complex
environmental signals. Anderson et al. (2005) engin-
eered bacteria to invade tumours in response to specific
extracellular conditions. By directing expression of the
invasion gene from Yersinia pseudotuberculosis
through promoters responsive to hypoxia, cell density
or arabinose, they restricted bacterial invasion of
mammalian tumour cells to these conditions. This is
significant because the tumour environment is often
hypoxic and allows for high bacterial cell densities due
to depressed immune function in the tumour. There-
fore, this work demonstrates, as a ‘proof of concept’,
that one can potentially use engineered bacteria to
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target diseased cells without significantly impacting
healthy cells.

A lot of synthetic biology research has been carried
out in bacteria due to their ease of manipulation and
simpler physiology when compared with mammalian
cells. While engineered bacteria do have tremendous
potential for therapeutic applications, as previously
illustrated, the general public may feel more comfor-
table dealing with therapeutics derived from mamma-
lian cells. Furthermore, mammalian cells are already
closer to being optimized for functions in the human
body. For these reasons, major advances in cell-based
cancer therapeutics are being made through engin-
eering of mammalian cells, including stem cells.
Rosenberg and colleagues report the generation and
application of tumour-specific T-cells in 15 metastatic
melanoma patients (Morgan et al. 2006). To generate
the cells, a T-cell receptor recognizing the tumour-
associated antigen (TAA) MART-1 was transfected
(using a retroviral vector) into the peripheral blood
lymphocytes isolated from the patients. Patients
received the engineered cells by adoptive cell transfer.
Even though only 2 out of the 15 patients showed
sustained regression, the work demonstrates the
potential applicability of targeted therapy using
engineered cells. The authors also indicate many
possibilities for improvement in future trials, such as
tighter binding TAA receptors or cytokine/tissue-
homing mechanisms.

The aforementioned work used a retrovirus for
integration of the transgene into patients’ cells
ex vivo. Viral vectors for gene therapy often insert
DNA at a particular locus in the cells’ chromosome.
However, in many cases, it may be more desirable to
actually replace a malfunctioning gene. Recent ‘parts
design’ has produced a library of the so-called zinc-
finger nucleases (ZFNs) that may enable in vivo human
gene replacement. ZFNs join a type of DNA recognition
element (zinc finger motifs) and a DNA-cleaving
enzyme (nuclease) to target a specified sequence.
Unlike many of the common bacterially isolated
restriction enzymes, which recognize 4, 6 or 8 bp,
ZFNs can recognize a sequence long enough for it to be
unique in an organism’s genome. Urnov et al. report the
construction and application of a pair of ZFNs that
recognize a 24 bp site in the human genome (Urnov
et al. 2005). The ZFNs create a double-strand break in
the chromosome. The break, in turn, induces cells’
natural homologous recombination machinery to incor-
porate DNA from synthetic donor constructs. Twenty
per cent of chromosomes successfully recombined,
leading to 7% of cells homozygous for the correction
in the absence of selection. ZFNs or other large and
specific endonuclease design (Arnould et al. 2005;
Ashworth et al. 2006) may hold the key to altering an
organism’s DNA post-development. Such in vivo gen-
ome alterations will enable therapeutic intervention
ranging from simple replacement of mutant alleles with
wild-type to controlled integration of novel multi-gene
circuits. An intrinsic advantage of gene correction (over
gene insertion) is that the replaced allele is present in its
natural chromosomal locus, therefore increasing the
chance it will be properly regulated.
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3.3. Renewable energies

As the global supply of fossil fuels diminishes, alterna-
tive and renewable energy sources will become more
critical than ever before. Production of bioethanol,
ethanol derived from crops, has emerged as a potential
way to convert abundant solar energy gathered by
plants into easily stored fuel for combustion engines
(Hahn-Hagerdal et al. 2006). Production of bioethanol
relies upon micro-organisms, such as yeast, to ferment
the plant materials. A current limitation, however, is
that most naturally occurring or laboratory micro-
organisms are incapable of converting all types of
energy-storing compounds found in crops into ethanol.
For this reason, sugarcane and corn are the major
feedstocks for bioethanol conversion (both sucrose and
starch can easily be converted to glucose). Conse-
quently, bioethanol production is economically feasible
only in the regions producing such crops, such as Brazil.

All human habitats have naturally thriving plants
that contain other energy-storing compounds, includ-
ing cellulose (40–50%), hemicellulose (25–35%) and
lignin (15–20%; Grey et al. 2006). However, for this
‘cellulosic biomass’ to be used, improvements must be
made in both the enzymatic degradation of these
compounds into simpler sugars (including glucose)
and the efficient conversion of non-glucose sugars to
ethanol. Optimization of enzymes such as cellulose and
hemicellulase can result in decreased costs and higher
efficiency. Here, synthetic biology could play a role by
either boosting expression through systems design or
improving activity and stability through parts design.

Microbial strain engineering has already begun to
tackle the issue of non-glucose sugar conversion
(Jeffries 2006). The primary non-glucose sugar formed
after enzymatic breakdown of cellulosic biomass is the
pentose sugar xylose. As a result, early efforts have
focused on the engineering of microbial strains capable
of co-fermenting glucose and xylose simultaneously in
order to increase yield and production rates. Ho and
colleagues address the xylose utilization issue by
introducing three xylose-metabolizing genes into the
yeast chromosome at multiple copy numbers: xylose
reductase (XR); xylitol dehydrogenase (XD) and
xylulokinase (XK; Sedlak & Ho 2004). Together,
these three enzymes convert xylose to xylulose-5-
phosphate, a key metabolite in the yeast pentose
metabolism pathway. Resulting strains produced etha-
nol levels in excess of 75% of the theoretical yield of
sugars consumed. An alternate method, described by
the Pronk laboratory, features the introduction of a
fungal xylose isomerase from Piromyces and the over-
expression of downstream pentose phosphate pathway
genes: xylulokinase; ribose 5-phosphate isomerase;
ribulose-5-phosphate epimerase; transketolase; and
transaldolase (Kuyper et al. 2005). The GRE3 gene,
which produces unwanted side product xylitol, was
deleted from the strain. The resulting strain was
capable of fast anaerobic growth with xylose as the
sole carbon source, but still showed a strong preference
for glucose in mixed carbon source cultures. In
subsequent work, Pronk and colleagues employed
long-term nutrient-limited chemostatic cultures to
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evolve strains with improved xylose uptake and usage
kinetics, resulting in a strain that completely ferments
both glucose and xylose in less than 25 h. While both
sets of strains described here can benefit from further
improvements, they demonstrate the progress being
made towards expanding bioethanol production to
more diverse crops. Future generations may be
cultivating high yield and easy to grow species such
as switchgrass or hybrid poplar trees to fuel the worlds
growing energy needs.
3.4. Pattern formation

The human body is a complex system of specialized
cells, tissues and organs. Remarkably, each highly
specialized cell in our bodies arises from a single
fertilized egg cell. This process of differentiation and
morphogenesis is mediated by the delicate interplay of
chemical gradients, cellular receptors, differential gene
expression and cell migration (Gilbert 2000). The end
result is that the 100 trillion cells of the adult human are
neatly arranged and specialized in a way that allows for
proper functioning of all bodily processes. Nature has
produced incredibly complex systems, as well as a
fantastic way of assembling them. This accomplish-
ment is even more amazing considering that the overall
robust system builds upon components that are often
intrinsically ‘noisy’. With regard to this accomplish-
ment, the synthetic biologist can ask ‘in what ways can
we recreate or use the complex pattern formation
systems found in nature, and to what ends?’

As a first step to address this question, Weiss and
colleagues rewired cell signalling pathways to create a
model system of chemical gradient-induced pattern
formation in bacteria (Basu et al. 2005). ‘Sender cells’
produce a small membrane-diffusible chemical, acylho-
moserine lactone (AHL), by expressing the luxI gene
from V. fischeri. ‘Receiver cells’, in turn, respond to the
signal through luxR activation upon AHL binding,
which induces transcription from a lux promoter. By
placing both a single repressor and a double repressor
cascade behind lux promoters, Weiss and colleagues
effectively created a band detector such that a down-
stream gene (gfp) is expressed only at intermediate
concentrations of AHL. Furthermore, by creating
variants of receiver plasmids through luxRmutagenesis
and copy number reduction, receivers can be tuned to
respond to different bands of AHL concentrations.
Consequently, when a region of sender cells is placed
within a lawn of receiver cells, fluorescence is observed
only in a ring whose distance from the sender cells
varies in accordance with the version of the receiver
plasmid used. The visual result resembles a bullseye.

While the bullseye pattern is novel and interesting,
one may be left wondering what use it can find. With a
little imagination, however, one can envision using this
pattern formation system to control a master regulat-
ory gene capable of committing cells to a particular
developmental fate. A higher-order function in natural
biological systems is associated with multi-cellularity
and cellular specialization. To produce similarly
complex functions, synthetic biologists will require
mechanisms that produce and maintain differentiation
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patterns. These mechanisms may lead to highly
sophisticated cellular system for fabricating biomater-
ials with well-defined dimensions. This line of research
may also synergize with research efforts focusing on
regenerative medicine (Lagasse et al. 2001) and tissue
engineering (Griffith & Naughton 2002), both of which
hinge upon controlling differentiation and pattern
formation. Biologists’ continued efforts to implement
synthetic multi-cellular systems will drive the pro-
duction of new and better approaches to artificial
cellular communication. Most communication systems
employed by synthetic biologists thus far have made
use of the small diffusible molecules from bacterial
quorum sensing. Further developments may feature
active and regulated transport of signalling molecules
across the cell membrane and the use of cell surface
receptors to recognize and send signals to adjacent cells.
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4. OUTLOOK

4.1. Standardization: promises and limitations

It has been suggested that many of the difficulties in the
production and optimization of biological circuits are
due to improper and incomplete description of parts
(Endy 2005). These limitations are twofold: first,
functional characteristics are often unknown for many
parts; second, even if they are known, they are rarely
described using standardized measures and are often
buried in the literature. Towards addressing these
limitations, the BioBricks Foundation has established a
‘registry of standard biological parts’ (The_BioBricks_
Foundation). The registry categorizes parts, devices
and systems. Ultimately, the registry strives to provide
information on not only sequence but also functional
characteristics, and make information available
through a central portal. Many of these parts have
been cloned into plasmids that enable easy assembly.
The plasmids are made available to students partici-
pating in the international Genetically Engineered
Machine competition (iGEM). Members of the Bio-
Bricks Foundation hope that the registry will decrease
the time and research costs needed to design and
implement gene circuits. Such efforts are analogous in
spirit to ongoing attempts to standardize mathematical
models (Hucka et al. 2003) and formats for microarray
data (Brazma et al. 2001). The limits in achieving parts
standardization for E. coli and other organisms remain
to be seen.

Even with a repository of information about stan-
dardized parts, a major challenge to applying this
information will be developing strategies to deal with
context dependence (Andrianantoandro et al. 2006;
Arkin & Fletcher 2006). For example, synthetic gene
circuits often exhibit varying behaviour in different cell
strains. In some cases, this can be easy to rationalize by
the presence or absence of a particular gene, or a
documented difference in the growth rate. In other cases,
causes of variability are much more difficult to ascribe
due to many hidden interactions between the designed
circuit and a far-from-elucidated host circuitry.

To address this issue, one may imagine selecting a
standard cell strain, in which standard parts under
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standard conditions are to be quantified. A starting
point for such a standard strain may be on its way. The
Blattner group has recently engineered a series of
multiple deletion strains (MDS) that have up to 15% of
their parental MG1655 genome removed but maintain
similar growth rates on minimal media (Posfai et al.
2006). Deletions were guided by comparative genomics
with related strains. Removing ‘unnecessary’ portions
of the genome can presumably reduce the number of
hidden interactions. Notably, the deletions cleaned the
cells of mobile DNA elements called insertion sequences
(IS) that might reduce the genetic stability of a circuit
by inserting themselves into and disrupting a DNA
sequence unpredictably. Interestingly, the MDS strains
produced some unanticipated benefits, including higher
electroporation efficiencies than their parent strain and
the ability to propagate some plasmids that the parent
strain could not.

In an alternate approach, researchers at the Venter
Institute have used Mycoplasma genitalium as a
starting point in their attempts to determine a minimal
gene set by systematically mutating every gene (Glass
et al. 2006). Mycaplasma genilalium has the smallest
known genome that is capable of growth in the absence
of other species. They conclude that in a laboratory
setting, only 382 of the strain’s 482 genes are essential.
Although a strain containing only this set of minimal
genes has not yet been constructed, it could eventually
serve as a bare bones platform upon which desired
functionality can be added. Such a small number of
genes might allow a greater percentage of the cell’s
molecular interactions and metabolic processes to be
understood, making the strain more predictable and
desirable as a starting point. However, of the 382
essential genes determined, 110 are annotated as
hypothetical proteins or as proteins of unknown
function, indicating that a truly complete cellular
model, even for this simplest of cells, cannot yet be
produced.

Despite characterizing parts in a standard strain
under defined conditions, individual parts may impact
the physiology of the host strain differently, for
instance, by placing varying burdens on the host
translation machinery. For this reason, one may wish
to minimize such interactions by creating privileged
sets of machinery. For instance, Rackham & Chin
(2005b) describe the formation of orthogonal ribo-
some—mRNA pairs that could be used to keep a
synthetic system and host more isolated. Using a dual
positive–negative selection scheme, they isolated
mRNAs with modified Shine–Dalgarno regions not
recognized by endogenous ribosomes, but instead
recognized by alternative ribosomes. Translation by
orthogonal pairs should be unaffected by endogenous
ribosomes and there should be no competition for
ribosomes between orthogonal mRNAs and traditional
mRNAs. In principle, multiple ribosome types can be
implemented for a specified function, just as cells
already possess multiple DNA or RNA polymerase
types, which play specialized roles.

Previous and current progress promises an ever
growing infrastructure that will no doubt tremendously
benefit future synthetic biology research, fundamental
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and applied alike. Concerning standardization,
however, two critical questions remain to be addressed
by the community. First, given the amount of cell
physiology (even for highly characterized organisms
such as E. coli ) that is still poorly understood, to what
extent can we standardize parts or systems with
confidence? Second, how much standardization can
we afford and still hope to create useful systems that
can work in complex environments such as in a cancer
or a polluted environment?

There is little difficulty in unambiguously defining the
DNA sequences that code for parts, be they proteins or
RNAs. The true challenge lies at the functional levels.
Parts will impact and be impacted by cell physiology,
which also changes in response to the environmental
conditions. In addition, parts tested in isolation may
unpredictably impact each other’s functions when
combined. For example, connecting one part’s DNA
with another part’s may introduce unintended
regulation by introducing enough flexibility in DNA to
allow DNA looping. For these reasons, one can rarely
have complete confidence in the part’s function even if
he/she uses it in a standard strain characterized under a
standard condition. Many such interactions are still
poorly understood, complicating the use of standard
parts. Yet, it is precisely this complexity that makes
engineering biology challenging and interesting. Decod-
ing this complexity is at least one important application
of synthetic gene circuits. Without a much deeper
understanding of cellular functions at all levels, it is
difficult to even define standards meaningfully.

From a practical standpoint, too much standard-
ization may remove flexibility in engineering useful
systems. It would be illogical to rely only on standard
strains that lack desirable properties for a particular
application. Consider thermophilic bacteria, capable of
life at temperatures as high as 1138C (Stetter 1999).
The ability to thrive at elevated temperatures may be a
useful property for synthetic organisms involved in
chemical processing, because higher temperatures
speed kinetic rates. Given the difficulty in thermo-
stabilizing even a single protein, however, it is unlikely
this quality can be engineered into a standard strain.
For many applications, the researcher is left with no
appealing options except to use non-standard strains.
No single strain or growth condition can ever cover all
potential synthetic biology applications.

If we remain dedicated to standardization, gathering
standardized information for a set of potentially useful
parts, in a set of useful strains, under a set of relevant
conditions becomes a combinatorial nightmare. The
inevitable result is that standards will only be available
for a limited number of strains and conditions.
Although some information is preferable to none, a
rising danger is to place undue weight on the limited
information available and assume that a part’s
behaviour will not vary significantly from the context
in which it was described. In this situation, ‘significant’
is considered to be variation that exceeds the accep-
table tolerance limits of a part in its new device.
Accepting standardized information at face value,
without acknowledging its limitations, will lead one to
design many systems doomed to fail. However, being
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aware of the limitations allows one to use standard
information without depending on it, to be guided by
the information while simultaneously embracing
strategies like combinatorial design (Guet et al. 2002)
and directed evolution (Yokobayashi et al. 2002) of
circuits—strategies that would be unnecessary in a fully
standardized and predictable world.
4.2. De novo cells

Finally, synthetic biology may, in addition to redesign-
ing cellular processes, contribute to producing artificial
cells exhibiting all the qualities that we associate with
life. For a good review of what characteristics such a cell
would need and what progress has already been made,
see Deamer (2005). It is probable that no matter what
system is devised for artificial encapsulation of
materials in membranes capable of self-reproduction,
there will be argument as to whether life has truly been
created. In fact, somatic cell nuclear transfer, best
known for cloning Dolly, the sheep, has already
accomplished a cellular ‘cold boot’. At the moment
that the nucleus containing the DNA (software) is
removed from the somatic cell, it is no longer living by
standard definitions and could be considered a collec-
tion of nucleic acid and protein molecules. Similarly, an
enucleated egg cell and cytoplasm (hardware) is not
alive by consensus definitions. However, when the two
are combined, life arises anew. The immediate retort
might be that the system relies too heavily on cellular-
derived components. Where does one draw the line
however? Will it only officially be the ‘creation of life’ if
each protein, nucleic acid or lipid in the new pseudo-
cells is chemically synthesized from precursors? Will
precursors themselves need to be produced from pure
elements? In any case, de novo cell design can shed light
on both the properties needed to produce life and how
terrestrial life could have arisen initially.
4.3. Social impact

Synthetic biology will undoubtedly head in many
unforeseen directions in the coming years and decades,
but along the way, researchers in the field are paying
particular attention to legal, ethical and political issues
dealing with the redesign of life. At the second annual
Synthetic Biology conference (SB2.0) in 2006, a full
third of the time was devoted to issues of bio-safety,
public perception, ownership and community organiz-
ation. Even in the early stages of the field, the need for
this discussion was apparent to many. Although
screening and controls have been put in place by
many DNA synthesis companies, these technologies can
allow for the purchase of potentially dangerous genetic
material. Nothing has illustrated this point more
clearly than the 2002 production of poliovirus from
synthetic DNA by the Wimmer laboratory (Cello et al.
2002). Using only synthetic oligos, cells expressing T7
polymerase and cell-free extracts, an ‘eradicated’ virus
with the same pathogenic properties as the original was
reproduced. Public perception issues were highlighted
by the publication of an open letter from a group of
NGOs, including Greenpeace and ETC that called for
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synthetic biologists to drop plans for self-governance
and instead demand governmental supervision due to
the ‘potential power and scope of this field’.

A considerationof ownership issuesarises fromthe fact
that if biological parts are owned and protected by
various entities, it may be legally difficult to produce a
complex system incorporating many of those parts—
hindering innovation and potential societal good. Active
analysis by legal scholars is needed to develop systems
that ensure freedom to operate, but maintain incentives
for invention and development. Some of this analysis is
already underway (Rai & Boyle forthcoming). Finally,
theneed for communityorganization is evident inorder to
not only manage the issues of public perception, bio-
safety and ownership, but also to guide the field in a way
that reduces growing pains. Particularly important is the
prevention of unrealistic expectations on the part of
granting agencies and public. Synthetic biology holds a
lot of promise, but none of the fields can address all
problems and none have produced any answers over-
night—despite popular hype. To achieve its vast
potential, synthetic biology will need sustained support
fromgovernments andapublic thatunderstandsprogress
is made in incidental steps.
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