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Abstract
An increasingly common component of studies in synthetic and systems biology is analysis of
dynamics of gene expression at the single-cell level, a context that is heavily dependent on the use
of time-lapse movies. Extracting quantitative data on the single-cell temporal dynamics from such
movies remains a major challenge. Here, we describe novel methods for automating key steps in the
analysis of single-cell, fluorescent images – segmentation and lineage reconstruction – to recognize
and track individual cells over time. The automated analysis iteratively combines a set of extended
morphological methods for segmentation, and uses a neighborhood-based scoring method for frame-
to-frame lineage linking. Our studies with bacteria, budding yeast and human cells, demonstrate the
portability and usability of these methods, whether using phase, bright field or fluorescent images.
These examples also demonstrate the utility of our integrated approach in facilitating analyses of
engineered and natural cellular networks in diverse settings. The automated methods are implemented
in freely available, open-source software.

INTRODUCTION
Time-lapse microscopy technologies now enable detailed data generation on dynamic cellular
processes at the single cell level (1,2). Recent studies have highlighted the use and importance
of this technology for investigating biological noise in the dynamics of gene regulation,
competence pathways in Bacilus subtili, and aspects of cell growth and proliferation, among
other areas (2,3,4,5,6,7). Mathematical and statistical models are of growing interest in
describing and testing hypothesis for such systems (9,10,11), and rely on extraction of data
from time-lapse microscopy imaging techniques that generate sequences of individual, pixel-
based image frames.

Unlike data generated from flow cytometry, which represent snapshots of cellular states, time-
lapse movies with sufficiently high temporal and spatial resolution allow time courses of gene
expression dynamics to be established at the single-cell level. These time courses are critically
important in studies investigating the dynamics of both natural (12,13,14,15) and synthetic
(16,17,18,19) cellular networks, dynamics that are often masked at the population level.
However, recognizing cells as objects in images, and tracking them from one image to the next,
remain as central technical challenges (1). These tasks, segmentation and tracking,
respectively, can be approached either manually or automatically. Typically, humans are good
at these tasks, but automation – essential for this fast-developing technology – is difficult and
poses open questions for methodology development.

Depending on the cells being segmented and tracked, various existing algorithms are available
(20,21,22,23,24). A universal solution to cell segmentation and tracking, applicable across cell
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types, has yet to be described. Algorithms that work well on one set of images often perform
poorly on another set due to differences in the features that are exploited. A major goal in
algorithm design and software development is then to provide a set of tools capable of
extracting cell-like objects from many different types of images. Attempts have been made in
both commercial and public domain software packages to solve these issues. Commercial
software, including Imaris from BitPlabe, Amira from Mercury Computer Systems, Volocity
from Improvision, MetaMorph from Molecular Devices and Matlab Image Processing toolbox
from MathWorks, are mainly for general purpose image analysis, not specific nor customized
to microscopy images. Among public-domain tools in development, Image-J is a general
purpose image analysis program, while CellProfiler (23), Cell-ID (20), CellTracker (24), and
GoFigure(1) aim to address segmentation and/or tracking in more specific areas. For example,
Cell-ID was developed for automatic segmentation, tracking, and quantification of
fluorescence protein levels in yeast. For specific synthetic or natural biological systems, ad
hoc algorithms have also been adopted for analyses of gene expression dynamics in bacteria
(5), yeast (25), and mammalian cells (26).

The algorithms implemented in above-mentioned tools use a number of variations of watershed
and level-set approaches for segmentation. The success of these approaches depends largely
on success in defining initial cell identity and location markers. When cells are tightly clustered,
as is often the case with data on E. coli and yeast, for example, it is typically difficult to correctly
identify initial cell objects to avoid mis-segmentation. Also, the methods used to define cell
markers vary with cell type and image type, thus reducing algorithm portability. To address
these questions, we develop the concept of hybrid grey-scale/black-white images and extend
existing image filters and mathematical morphological operators for grey-scale images to work
with these hybrid images. This approach allows us to extract cells from an image in an iterative
process that gradually converts the grey-scale image into a black-white mask thus segmenting
the image into cells, without relying on initial cell markers.

Moreover, tracking algorithms used in existing tools also face portability challenges: they often
accomplish the tracking task by minimizing ad hoc global energy functions that are problem-
specific, and typically do not consider locally clustered cells. To overcome these complications,
we incorporate neighboring cell information to compute numerical likelihood scores for cell
identity between each pair of time steps t to t+1. We then apply an integer programming method
to generate frame-to-frame correspondences between cells and the lineage map.

The resulting, fully automated analysis, wrapped in an open-source Matlab application, is
demonstrated here on two E. coli bacteria data sets, one yeast dataset and one human cell data
set. Full algorithmic, workflow and analysis details, and more extensive examples, are given
in several sections of the Supplementary Materials. Additional information and examples,
together with the source code, a graphical user interface, examples of alternative workflows
and other supporting documents, can be found at the CellTracer website
(http://www.stat.duke.edu/research/software/west/celltracer/). With this methodology and
tool, we have been able to successfully analyze single-cell time-lapse movies of cellular
dynamics for diverse cell types, spanning from bacteria to yeast to human cells and diverse
image types, from phase to bright-field to fluorescence images. As such, we believe it will
facilitate quantitative spatiotemporal analysis of synthetic and natural cellular networks.

RESULTS
Image preprocessing and hybrid filters on hybrid grey-scale/black-white image

Preprocessing begins with a three-step partition of an initial grey-scale image into three
distinctive regions: background, border, and undecided. The first step identifies the background
using a modified nonlinear range filter followed by a standard morphological dilation. This
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recognizes regions that do not vary much and yet are large enough to be part of a cell. The
second step identifies border regions that are not background or part of a cell, using an extended
high-pass filter that operates on the masked image from the first step. Undecided regions are
regions yet to be classified. It is also sometimes useful to re-label undecided pixels with extreme
values as border regions by global thresholding.

Recognizing that bacterial, yeast and human cells typically have smooth borders, we used a
nonlinear range filter with a disk-shaped neighborhood, or a structure element. The disk size
has to be larger than the maximum width of cells from all images. Once these range values are
calculated, a threshold is chosen such that a pixel with range value less than the threshold will
be labeled as 0, an indicator for background. The resulting images are grey-scale with zero
values indicating background. If we also assign special meaning to the largest values in the
grey-scale image (255 for 8-bit images), as we do (below) for cell borders, we create a hybrid
grey-scale/black-white image. In contrast, most other filters will end up with either black-white
or grey-scale images only. Consequently, we also have to modify the usual high-pass filter not
to use the pixels that take zero values when identifying the border regions in the initial partition.
This can be done with a masked neighborhood approach. That is, we exclude all pixels that are
masked to be the black-white during filtering, and use only pixels in a neighborhood that are
part of the grey-scale image. This mask-based strategy, including the modified range-filter in
the previous step, can be applied to other filters (Supplementary Note 2).

In general, we can extend the above ideas to design a class of mask-based filters on hybrid
images, as follows. Let H = (I,M) be a hybrid image comprised of a grey-scale image I and a
black-white mask M. Let H’= F(H) be a function where the output H’= (I’,M’) is also a hybrid
image, created via

(1)

Then F is called a hybrid filter if

(2)

for all I and M, where.* represents the element-wise product. In other words, H’ only depends
on pixel intensity values in I that have corresponding non-zero values in M. With this notation,
given any hybrid image H = (I,M), we formally define a specific class of hybrid filters, called
hybrid range filters (or HRFs), as follows. Each HRF is defined by a specified range parameter
r > 0. For each image pixel (i,j), denote by Ei,j the structure element centered at the pixel, and
define Ui,j = I(Ei,j ∩ M) where ∩ is the set intersection operator. Then the HRF map (I’,M’) =
F(I,M) is given by

(3)

Hence, to calculate the output gray-scale intensity value Ii,j’, the HRF first extracts all the pixels
from its neighborhood as defined by the structure element, and then these pixels are further
selected according to the corresponding binary mask. The output intensity is then kept the same
as input only when the intensity values from the above selected neighborhood fall into the
range defined by r. The output binary mask Mi,j’ is simply set to 1 when the corresponding
grey-scale intensity is non-zero.
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In addition to range filters, we can design hybrid median, mean, or rank filters, in an obvious
extension of the above definition of range filters. There are several advantages to these hybrid
filters. First, both black-white and grey-scale images can be treated as special cases of the
hybrid images by using proper masks, thus avoiding the need to distinguish the types of input
images. For a pure grey-scale image, the mask M is a matrix of ones and for a pure black-white
image M is a zero matrix of the same size as I. Second, as the input and the output images are
always of the same type, we can combine various types of filters sequentially to address
different filtering needs. Third, instead of being forced to threshold the grey-scale image into
black-white at some point of the image processing all at once, we can gradually threshold the
image in an iterative and selective way and slowly turn an input grey-scale image to an output
black-white image. This advantage will be demonstrated in the segmentation step below.

Figure 1 gives an example of applying hybrid filters to preprocess a raw, grey-scale image.
This process generates a hybrid image by classifying some pixels as background and others as
cell borders while keeping remaining regions for further segmentation. Figure 1a shows three
images of engineered E. coli bacteria programmed via a synthetic gene circuit (Supplementary
Note 1). The cells are generally represented by darker pixels and surrounded by bright borders
while the grey regions are background. Figure 1b is the result of applying the hybrid range
filter to identify background as colored in green. Figure 1c is the result of applying the hybrid
high-pass range filter to Figure 1b to identify border regions, colored in blue. Figure 1d is the
result of further applying a global threshold filter to mark more pixels as borders. Note that
this preprocessing just gives an initial partition for the input images, and may or may not be
needed for every data set analysis.

Segmentation with iterative/selective masked erosion and dilatation
Segmentation identifies groups of pixels as cell objects. A common challenge with any
algorithm is over- or under- segmentation (27,28,29). We approach this issue using an iterative
algorithm that couples our hybrid filters with hybrid smoothing and dilation. We extend the
concept of hybrid filtering to image smoothing and erosion/dilation (Supplementary Note 2).
The hybrid image from the preprocessing step is input to analysis that applies a hybrid filter,
or a combination of filters, to erode the undecided regions, followed by hybrid dilation and
smoothing to restore most of the pixel values changed by the filter. The overall result is a subtle
change in the mask associated with the hybrid image. We iteratively repeat this process,
possibly with slightly more aggressive parameter settings, to gradually change the associated
mask until a stopping rule is met (Supplementary Note 4). This final mask associated with the
hybrid image is the resulting segmented image.

We enhance the above strategy by adding a cell object modeling and selection step at the end
of each iteration. Recognizing that cells have common morphological features (shape, size,
smoothness) we define cell or object shape models. Disconnected segmented regions – referred
to as blobs – in the binary mask are labeled, evaluated, scored and then classified into two
groups based on the object shape model. Here we apply this method to set of data generated
with engineered E. coli carrying a population control circuit (31) (Supplementary Note 1). This
data set is challenging in that many bacteria are elongated due to the circuit function and that
there is great diversity in the sizes of closely clustered individual bacteria. With E. coli data,
the cell object model assumes a straight or curved cigar shape and a minimum pixel volume;
in the example of Figure 1, all blobs are classified as either cells or undecided. Undecided blobs
are subject to further segmentation and cells are considered done with no further segmentation
performed. This approach proves to be very useful especially when the cells exhibit diversity
in scale, e.g., cells differing in diameter, in which case cells at different scales will be picked
up at different iterations. More details appear in the Methods section and Supplementary Note
4.
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We illustrate this approach in Figure 2 for the dataset used in the preprocessing step above.
Figure 2a shows the result of using a hybrid rank filter with disk-shape structure element to
the hybrid images in Figure 1d. Figure 2b shows the hybrid image after further smoothing,
thickening, and re-smoothing to Figure 2a. Many larger blobs in Figure 1d are broken down
into smaller blobs. By thresholding, all blobs in Figure 2b are classified into two subsets as
shown in Figure 2c and Figure 2d. Figure 2c shows the binary masks of the blobs with lower
scores that will not be further segmented and Figure 2d shows the blobs with higher scores and
will be subject to further segmentation. Figure 2e is the final segmentation (cell coloring is
arbitrary and only for visuals).

The same approach for yeast and human cells uses a slightly different cell object shape model.
The main difference is that we assume cells have convex or nearly convex shapes, instead of
the “bendy” cigar shape. Detailed description of this model can be found in Supplementary
Note 6. Though designed for yeast and human cells, this model works equally well on bacterial
examples, illustrating the robustness of the method.

Once the iterations terminate, cells are labeled by recognizing disconnected blobs in the binary
mask image. Basic quantities such as shape, size, boundary, and centroid can then be measured
using techniques such as described in (20).

Cell lineage reconstruction through neighborhood-based scoring
Segmentation generates a sequence of images with objects segmented in each. To track cells
over time and to reconstruct lineage trees, we use a two-step algorithm to first construct score
matrices for all cells in each pair of consecutive images and then apply an optimization
algorithm to obtain the frame-to-frame correspondence matrices. Suppose that image t has m
cells and image t+1 has n cells. A forward score matrix (m by n) and backward score matrix
(n by m) describe the likelihood of a cell in image t corresponding to a cell in image t+1 and
that of a cell in image t+1 corresponding to a cell in image t, respectively. These matrices are
further combined and transformed into a 0-1 correspondence matrix with 1 indicating a
correspondence between a cell in image t and a cell in image t+1. Due to cell growth, death,
or division, a cell in image t can correspond to 0, 1 or 2 cells in image t+1.

To construct forward and backward scores for each pair of cells, we calculate geometric
overlapping scores for the pair. We then locate all neighbors of each cell in each image and
compute a pair of neighborhood scores over the neighborhood of each cell using the
overlapping scores. By repeatedly shifting one image slightly, we recalculate overlapping and
neighborhood scores for cell pairs and record the final scores as the largest combined
neighborhood score over all shifts within a predefined distance. We make these scores more
robust by using a threshold when calculating the neighborhood scores so that small overlapping
scores are not used to calculate final scores. Note that we do not specify a cell object model
for the tracking algorithm. Instead, only the area representing a cell is used in the algorithm.
By design, this neighborhood-based approach introduces robustness to image shifting during
image capturing or cell movement. Figure 3 provides an example for calculating the score for
a pair of E. coli cells, using data of Rosenfeld et al. (4). Figures 3a and 3b show two images at
consecutive times with the pair of cells labeled in blue. Figure 3c is the result if we overlay the
segmented images. This will not yield an acceptable score as two highlighted cells do not
overlap at all. Instead, to construct a pair of scores for the cell at these two times, the
neighborhoods for these cells are first located as shown in Figure 3d and 3e respectively. Then
by shifting image 3b around, the best scores are obtained at the overlapping position as shown
in Figure 3f. The bright yellow indicates the cells used to construct the scores.

To transform the forward and backward score matrices into a single correspondence matrix,
we start by noting that a cell in image t can disappear (die), grow, or divide into two cells in
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image t+1. So a cell in image t can only correspond to 0, 1, or 2 cells in image t+1. We also
assume that a cell in image t+1 can correspond to at most 0 or 1 cells in image t, which restates
the fact that a cell is an orphan or a descendent of a cell in image t. We then combine the two
score matrices using dot product and calculate the row and column maxima in the combined
score matrix; our algorithm then scans the combined score matrix to locate values that are both
row and column maxima and assigns matches for corresponding cell pairs. During this process,
if more than two cells in image t+1 can be assigned to one cell in image t the backward score
matrix is referenced so that the two cells with best scores are used to assign the matches. We
repeat this process while excluding the cells in image t+1 that are already matched and
enforcing the cell growth event restraints until no more correspondences can be found. Once
the correspondence matrices for all consecutive images are generated, we reconstruct the cell
lineage trees by linking the sequence of correspondence matrices. Individual tracks can be
further obtained by back-tracking the cells identified in the last frame to the cells in the first
frame from the lineage trees.

Figure 4a shows the combined score matrix for Figure 3, displayed as a heat map. Figure 4b
shows the resulting correspondence matrix heat map after applying our optimization algorithm.
This can be converted into a 0-1 correspondence matrix by identifying those scores above a
specified threshold. From the image, we notice from the columns that each cell corresponds to
only one cell from the previous image; similarly, from the rows we see that each cell
corresponds to one or two cells (cell splitting) in the following image. Figure 4c shows a
complete lineage tree for cell 1 in images 1 through 25 (displayed using GraphExplore:
www.stat.duke.edu/research/software/west/graphexplore.html). The numbers in each node
represent the image index and the cell index, respectively.

Comparison with existing algorithms
Sigal et al. (26), Gordon et al. (20), and Charvin et al. (30) demonstrated segmentation/tracking
results on human and yeast cells using the Cell-ID, CellProfiler and other tools. While complete
yeast segmentation/tracking results are not available from (20), Figure 5a provides the
correspondence heat map analogous to Figure 4a using the methods in (20). Compared to Figure
4a, it shows more small but non-zero values (in light blue) and fewer large values (in bright
red). It is evident that our neighborhood score based tracking method provides a much sharper
score matrix with substantially improved cell correspondences as indicated by red/orange
pixels. The Sigal et al. study provided human cell imaging data in terms of supplementary
movies as well as summaries of cell tracking results. This human data example provides a nice
context for a side-by-side comparison with our method. Figure 5b demonstrates all 97 tracks
reconstructed using our approach as compared with only 57 reported in (26). Further
investigation based on our full tracking result suggests that there are at most 99 actual tracks
from the last frame back to the first frame in the movie. i.e., our algorithm reconstructs almost
98% of actual tracks in the movie. Importantly, our analysis was a direct application of the
automated method applied to bacterial data with no additional parameter tuning. More details
on analysis of this data set, as well as additional examples using budding yeast data, can be
found in Supplementary Note 6.

DISCUSSION
Our results demonstrate the utility and portability of our cell segmentation and tracking analysis
for single-cell images of bacterial, yeast and human cells. The method applies similarly to other
cell types using cell object shape models. Whatever the cell type, the automated, iterative
algorithm for segmentation provides a novel and accurate way to extract cell information from
time-course images. The concept of hybrid images and hybrid image based filters can be readily
ported to existing tools that are designed purely for grey scale or black-white images. The
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neighborhood-based score function provides an efficient way to track cells through time. By
using very common cell features and avoiding modeling cell growth transformations, our
approach is robust and has good portability for deployment in other studies. By thresholding
and using only higher scores when calculating correspondence, we can easily make the tracking
algorithm iterative to deal more complicated cases and design algorithms that allowing
skipping a frame for cell correspondence.

Common methods such as background filtering, contrast enhancement, iterative morphological
operations are of proven utility in image segmentation. However, effectively combining such
methods, as several prior studies have done, is challenging as these operators each apply to the
entire image under investigation without discrimination and thus often create undesired side
effects. Our hybrid image-based operators allow us to take advantage of these useful methods
but in such a way as to minimize these undesired side effects.

Depending on the types of images to be analyzed, the image preprocessing step can be vital to
the success of segmentation. In the contexts here, image preprocessing is tuned to work
specifically with cells that have smooth shapes and that are generally represented by pixels
that are darker or brighter than the surrounding environment, which for example, might not be
the case for DIC images. However, the general strategy can be ported to deal with other cell
types based on alternative assumptions about distinctive border and inner regions.

Our iterative approach for cell segmentation gives another example of deploying different
operators defined on hybrid images to selectively target the unclassified regions of images
while leaving well classified regions untouched. This approach is especially useful when the
cells in the images have different scales or distinctive subclass features. Compared to
commonly used global and adaptive threshold methods, iterative morphological erosion/
dilation, or watershed based methods for segmentation, our analysis across a range of examples
is uniformly effective in terms of overcoming the common pitfalls of over- or under-
segmentation.

A core issue of cell tracking is to determine the correspondences between cells in two
consecutive images. Some assumptions have to be made about the image acquisition rate and
also about the cell growth rate to have a well defined problem. Low image sampling rate, high
cell growth rate, or both will make tracking nearly impossible without strong assumptions.
Even for well-behaved data, however, finding correspondences between cells across images
is an NP-complete problem. This problem is further complicated by poor segmentation and
various transformations and spatial mappings due to cell growth such as change of shapes, cell
division and also imperfect image acquisition techniques. Some of the best methods currently
available use joint estimation of correspondence and spatial mappings via optimization of
energy functions (32). The success of such approaches is heavily dependent on the design of
energy function and the choice of optimization technique as well as the choice of mapping
functions and cell features. Other approaches use more formal statistical models to estimate
the likelihoods of cell death and division between frames and consolidate these likelihood
values into correspondence using integer programming optimizations (33).

Our approach has built on the best characteristics of these general strategies. We first derive a
score that uses only one robust feature extracted from cells together with the neighborhood
information. Then our greedy search algorithm consolidates the scores into cell
correspondences. To construct the score, we intentionally avoid using the popular cell feature
candidates such as volume, orientation, centroid, and major and minor axis. Instead, we used
geometric overlapping as a basis for our score. However, some obstacles have to be overcome
to use this feature successfully. First, the standard overlapping measure is symmetric for two
involved images and does not deal with cell division events correctly. We address this issue
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by using forward and backward overlapping measures, which turns out to be critical for
successful tracking of budding yeast cells. Second, systematic shifts of image or local
movements of cells can cause standard overlapping measure to be unstable. We address this
issue by shifting one image around and finding the best local neighborhood match before
deciding the actual overlapping measure. The resulting overlapping measure is robust to these
obstacles and can be easily applied to other cell images. As a result, there is very little parameter
tuning for three different types of cells we analyzed here. To further test our tracking algorithm,
we have rerun analyses by skipping every other frame in the image sequences and have found
that there is little change in tracking results for E. coli and human cells. In the case of budding
yeast cells, however, we did observe more tracking mistakes at times when daughter cells were
just separated from mother cells.

METHODS
Initial partition to convert grey-scale image into hybrid image

The input grey-scale phase images are first preprocessed to generate hybrid images for further
segmentation. To identify the initial background, we customized the range filter from the
Matlab image processing toolbox to use a disk shaped structure element in observing the fact
that all the cells under consideration have rather smooth shapes. We then scan all image frames
to generate an initial estimate of the maximum half width, r, of all cells and choose the radius
of the disk structure element to be between r and 2r. After applying the range filter, a fixed
threshold is chosen so that in any image, a pixel with range value less than the threshold will
be marked as 0 for background. While there might be optimal values for such parameters to
get best initial background partition, we find this usually gave satisfying initial results after a
few preprocessing attempts. The resulting hybrid images are then fed into a modified high-
pass range filter to identify the cell border regions. The high-pass range filter is modified in
two ways: we use the disk shaped structure element as we did for background, and we exclude
all background pixels when recording the minimum value within the neighborhood of each
pixel. We choose a value for this threshold so that only the very obvious border pixels are
marked as 255 for border in our 8-bit input images.

Iterative cell segmentation
Iterative cell segmentation in general involves the following steps: (1) Label disconnected
blobs in the associated binary masks from hybrid images. (2) Filter each labeled blob using
hybrid filters to obtain a refined estimate, which usually will break down some undesired blobs
into smaller blobs. (3) Score the refined blobs based on the cell shape model assumptions.
Some example cell shape models can be found in Supplementary Notes 3 and 6. (4) Threshold
all blobs into two subsets using a user chosen score threshold. (5) Keep the subset of blobs
with lower scores unchanged and repeat (1) through (4) until no more blobs can be broken
down and the resulting binary mask is taken as the segmentation result. For our example
datasets, step (2) is further detailed as follows: (2a) For each blob in the subset with higher
scores, a modified rank filter with disk-shape structure element is applied to the corresponding
grey-scale blob to identify the pixels with higher intensity values and to erode them from the
corresponding binary mask; (2b) The eroded mask blob is then further smoothed by applying
a distance transform to the inverted mask,which caculates the distance between each pixel that
is set to zero and the nearest nonzero pixel in the mask, and then thresholding it; (2c) The
smoothed mask is dilated through a morphological thickening with respect to the original
binary mask in (2a). As a result of (2a) through (2c), many blobs with higher scores will break
down into smaller blobs and yield further segmented hybrid images. We have also developed
alternative procedures in the software for step 2 that user might find more effective for specific
dataset or cell types.
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Construction of forward and backward score matrices
We use the strategy described earlier to construct the forward and backward score matrices.
Our realization of this strategy uses the following implementations. At time t, we define the
forward geometric overlapping score for cell i in image t and cell j in image t+1 as the ratio of
number of pixels in cell i divided by the total number of pixels in both cell i and cell j. Similarly,
we define the backward geometric overlapping score for cell j in image t+1 and cell i in image
t as the ratio of number of pixels in cell j divided by the total number of pixels in both cell i
and cell j. We regard a cell i is in the neighborhood of a cell j if they overlap at least once if
we shift cell i within given pixels p, where p controls the maximum neighborhood size. The
threshold we chose to decide if a geometric overlapping score will be counted as valid is 0.2.
This threshold can be set to a higher value if cells do not move or change shape a lot. The
combined neighborhood score is the square of the sum of the forward and backward scores.

Correspondence matrix
We transform the score matrices into correspondence matrix using the greedy approximation
algorithm implemented in CellTracer, with implementation details provided in Supplementary
Note 5.

Alternative implementations
We have presented one particular implementation of our overall strategy and resulting
algorithm, in a form that works well on all three types of testing data sets – bacterial, yeast and
mammalian cells – and based on phase, bright field or fluorescent images. It is however
understood that improved segmentation results, or more efficient algorithms, may be achieved
by tailoring the workflow to more specific features of a data set. Our emphasis is on robustness
and portability, but we have detailed the opportunities to further customize the approach, if
desired, in supporting material and describe some such customization in explicit detail in
examples at the software website.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Preprocessing to convert the input grey-scale phase image into a hybrid image. (a) Sample
grey-scale input images from E. coli experiment at time point t = 10,t = 25 and t = 40
respectively. (b) Resulting hybrid images after applying the modified range filter to identify
initial backgrounds (colored in green). (c) Resulting hybrid images after applying the high-
pass filter to (b) to further identif border regions (colored in blue). (d) the resulting hybrid
images after applying a threshold filter to (c) to mark more pixels as borders.
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Figure 2.
Iterative segmentation. (a) Result of using a hybrid quantile filter on images in Figure 1d. (b)
Hybrid images after further smoothing, thickening and re-smoothing to (a). (c) The binary
masks of the blobs with lower scores in (b). (d) The blobs with higher scores in (b). (e) The
final segmentation result with (arbitrary) cell coloring for visual clarity.

Wang et al. Page 14

Cytometry A. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Neighborhood based cell tracking. (a,b) Two images at consecutive times with the same cell
labeled in blue.
(c) Result of overlaying the segmented images from a and (b). (d,e) Neighborhood of the cell
identified in (a) and (b) respectively, labeled in blue and cyan. (f) The overlapping position
where the best scores are obtained for the labeled cells in and (b).
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Figure 4.
Cell tracking and lineage tree reconstruction. (a) The combined score matrix displayed as a
heat map, with warm color indicating good matching. (b) Heat map for the final correspondence
matrix. (c) Complete lineage tree for cell number 1 tracked in images 1-25.
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Figure 5.
Comparison with other leading algorithms. (a) Heat map of score matrix analogous to Figure
4(a) using the method of (20). (b) Tracking result for human cells compared to that of (26).
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