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Dispersal is necessary for spread into new habitats, but it has also
been shown to inhibit spread. Theoretical studies have suggested
that the presence of a strong Allee effect may account for these
counterintuitive observations. Experimental demonstration of this
notion is lacking due to the difficulty in quantitative analysis of
such phenomena in a natural setting. We engineered Escherichia
coli to exhibit a strong Allee effect and examined how the Allee
effect would affect the spread of the engineered bacteria. We
showed that the Allee effect led to a biphasic dependence of bac-
terial spread on the dispersal rate: spread is promoted for interme-
diate dispersal rates but inhibited at low or high dispersal rates.
The shape of this dependence is contingent upon the initial density
of the source population. Moreover, the Allee effect led to a trade-
off between effectiveness of population spread and survival: in-
creasing the number of target patches during dispersal allows
more effective spread, but it simultaneously increases the risk of
failing to invade or of going extinct. We also observed that total
population growth is transiently maximized at an intermediate
number of target patches. Finally, we demonstrate that fluctua-
tions in cell growth may contribute to the paradoxical relationship
between dispersal and spread. Our results provide direct experi-
mental evidence that the Allee effect can explain the apparently
paradoxical effects of dispersal on spread and have implications for
guiding the spread of cooperative organisms.
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Afundamental question in biology is how the spread and survival
of an organism is influenced by various factors (1), including

population density (2), dispersal rate (3), and habitat configuration
(4). Addressing this question has implications for understanding
and controlling biological invasions caused by the introduction of
a new species into an established ecosystem (1), the spread of in-
fectious diseases, or the emergence of new pathogens (5).
Dispersal has been recognized as being particularly critical in

promoting successful spread (e.g., ref. 1; additional examples in SI
Text). However, dispersal has also been shown to reduce spread
(e.g., ref. 6; additional examples in SI Text). Theoretical studies
have proposed that this paradoxical observation can be explained
by the Allee effect, which is defined as a positive relationship be-
tween individual fitness and the total density of the population (7,
8). In the extreme case, called a strong Allee effect, the population
will display a negative fitness, which can be manifested as a nega-
tive growth rate, when its initial density is below a critical thresh-
old. Often, a strong Allee effect can be due to the inability to
initiate a cooperative behavior at low density (7). This dynamic is
observed in several contexts of biology including invasive species,
reintroduction biology, epidemiology, the infection of an individual
host by microbial pathogens, and quorum sensing (SI Text).
By assuming a strong Allee effect, theoretical studies have

predicted that dispersal can have a dual effect on population
survival and spread. Slow dispersal can prevent the colonization
of new territories because the number of individuals arriving in

a new area is insufficient to establish a new population (e.g., ref.
9; additional examples in SI Text). Fast dispersal can act as a drain
on a source population, which can become too small to be
maintained (e.g., ref. 10; additional examples in SI Text). These
predictions have been invoked previously to explain the failure of
organisms to expand their ranges or to become established (SI
Text and Table S1).
Although this theoretical explanation is plausible, its exper-

imental demonstration is lacking. This is particularly difficult to
verify experimentally in a natural setting because such settings
are subject to numerous confounding factors that can obscure
the contribution of individual components to the outcome of
successful spread. Along this line, it has been suggested that
environmental and demographic stochasticity may contribute to
population extinction, even in species without an Allee effect
(SI Text). The role of a strong Allee effect is further compli-
cated by the limited number of empirical studies that demon-
strate the existence of an Allee effect (11), in part due to
difficulty in quantifying and studying small populations.
To overcome these difficulties, we engineered a gene circuit to

confer a strong Allee effect in Escherichia coli and examined its
impact on spread and survival. Synthetic biology involves creating
novel behaviors in biological systems using gene circuits. These
synthetic systems have resulted in numerous novel behaviors in-
cluding spatial patterning (12) and modulation of fitness (13).
Synthetic systems have several advantages over both field and
theoretical studies (14). These systems provide a well-defined sys-
tem to focus on the key, fundamental parameters in a more de-
finitive manner, and they allow direct mapping between modeling
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and experiments. Although modeling is often used as a driving
force in such studies, the ability to confirm the model predictions in
a living system serves as a critical proof-of-principle for the plau-
sibility of these predictions. The use of synthetic gene circuits can be
thought of as an extension to the use of microbes as model systems
to examine questions in evolution and ecology (e.g., ref. 15).

Results
Programming a Strong Allee Effect in E. coli. The fundamental prop-
erty of a strong Allee effect is a population that has a negative
fitness level below a density threshold (SI Text); the population can
only grow when its initial density is above a threshold density,
CCRIT. As such, the strong Allee effect represents a form of bistable
growth (16). To realize this property, we used the LuxR/LuxI
quorum-sensing (QS) system from Vibrio fischeri (17) and the
CcdA/CcdB toxin–antitoxin module to control population survival
(Fig. 1A and Fig. S1A). Induction of our circuit by isopropyl β-D-1-
thiogalactopyranoside (IPTG; 1 mM) activates expression of the
LuxR/LuxI system and CcdB. CcdB causes cell death by inhibiting
DNA replication (18). CcdB can be inhibited by CcdA, which is
controlled by the QS module. LuxI leads to synthesis of acyl-
homoserine lactone (AHL). Because AHL can diffuse across the
cell wall, its concentration increases with bacterial density. At a
sufficiently high concentration, AHL activates LuxR, which drives
the expression of CcdA. CcdA then inhibits CcdB, thus rescuing the
population. Our circuit logic mimics the generation of the Allee

effect due to environmental conditioning, where a group of co-
operative organisms modifies the environment to grow (Table S2).
In a natural setting, spread occurs when an organism travels

from an initial area to a separate, geographically distinct area.
Spread by such organisms often displays a central area of growth
(i.e., source patch) surrounded by several separate areas of growth
(i.e., target patch) indicative of between-patch or multipatch (i.e.,
multitarget or stratified) dispersal (e.g., ref. 19; additional ex-
amples in SI Text). These patches are often only connected by
dispersal and are therefore physically separated. It has been
suggested that failing to account for between-patch dispersal
has led to the inability to accurately predict spread rates (20)
and that an understanding of these dynamics is required to un-
derstand population spread (21).
To understand how between-patch dispersal and a strong Allee

effect interact to control spread, we established a theoretical and
experimental framework (SI Text). We initially consider two dis-
crete patches (a source and a target patch) that are connected via
one-way dispersal (from source to target). Both populations at
the source and target populations are well mixed, and we do not
account for any measure of distance between the patches. This
two-patch system with discrete dispersal has been used extensively
in the past to model the spread of species (SI Text). Experi-
mentally, we emulated dispersal by discretely transferring bacteria
from a source patch to a target patch and measured optical
density (OD) in both patches over 28 h. Our discrete transfer
protocol follows similar techniques that have been used to
simulate dispersal using synthetic systems (e.g., ref. 22). Finally,
our protocol may be amenable for the study of Allee effects in
natural systems, including Drosophila melanogaster (Table S2).
One could disperse an established population of flies to new
medium in a separate culture and examine reproductive success.
The circuit can be modeled by two equations (Eqs. 1 and 2,

Materials and Methods, SI Text, and Table S3). With the circuit
OFF or ON + rescue (i.e., medium supplemented with 0.1 μM
AHL), the model predicts that the bacterial density (C) will in-
crease regardless of initial C (Fig. S1B). With the circuit ON, the
model predicts that the population will only grow when starting
from a sufficiently high initial C (Fig. S1B). To test these pre-
dictions, we inoculated the engineered bacteria at varying initial
densities and grew them under three conditions in a microplate
reader: no IPTG (circuit OFF), 1 mM IPTG (circuit ON), and
1 mM IPTG and 0.1 μM AHL (circuit ON + rescue). For each
culture, we measured its density using OD (measured at 600 nm)
every 20 min for 50 h. When the circuit was OFF or ON +
rescue, the cultures grew regardless of their initial densities (Fig.
S1C). When the circuit was ON, the cultures starting from a high
initial density (∼108 cfu/mL) grew to a high density (OD = ∼0.4)
after ∼25 h, whereas those starting from a low initial density
(∼104 cfu/mL) did not grow over 70 h (Fig. S1C).
The OD measurements were consistent with viable cell counts

measured by cfus. With the circuit OFF or ON + rescue, our
model reduces to a logistic equation where the specific growth
rate [Δ(lnC)/Δt] is expected to decrease with initial C (Fig. 1B,
blue and green lines, respectively). This was confirmed by ex-
periment (Fig. 1C, blue and green circles/lines). When the circuit
is ON, the specific growth rate is predicted to be negative for an
initial C below a threshold, CCRIT (Fig. 1B, red line). Above
CCRIT, the specific growth rate first increases and then decreases
with increasing initial C, while going through a maximum at an
intermediate initial C. This prediction was confirmed by experi-
ment (Fig. 1C, red circles/lines, and Fig. S1D). When our engi-
neered bacteria were grown with the circuit ON and from a low
initial density (<∼104 cfu/mL), the number of cfus decreased over
28 h. Cultures starting with an initial density above ∼104 cfu/mL
grew during the same time period. The net change in culture
density increased with the initial density until the latter reached

Fig. 1. Programming a strong Allee effect in E. coli. (A) The circuit consists of
a killing module (red shaded) and a rescue module (green shaded). The killing
module consists of the Plac promoter driving expression of ccdB (indicated by B).
The rescue module consists of the luxR(R)/luxI(I) quorum sensing (QS) system
under the control the Plac/ara promoter and ccdA (indicated by A) under the
control of the Plux promoter. Green circles, 3-oxohexanoyl-homoserine lactone
(AHL). (B) Specific growth rates of the engineered bacterial population. With
the circuit OFF or ON + rescue (directly behind blue line, initial rescue [A] = 0.1
μM), the specific growth rate is predicted to decrease with increasing initial C
(bacterial density). With the circuit ON, a strong Allee effect is observed; the
specific growth rate is negative if the initial C is below the Allee threshold
(CCRIT). Specific growth rate [Δ(lnC)/Δt] at t = 100 h. (C) Experimental verifi-
cation of a strong Allee effect. With the circuit OFF (−IPTG) or ON + rescue
(+IPTG/AHL), cfus decreased with increasing initial bacterial densities. With
the circuit ON (+IPTG), a strong Allee effect was conferred to the population,
where cfus decreased below an initial bacterial density of ∼104 cfu/mL.
Change in cfu/mL was calculated using ln(cfufinal) − ln(cfuinitial) at 28 h. When
cfufinal was 0, a result of negative infinity was obtained. SD from three
replicates. Lines drawn as a guide.
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∼105 cfu/mL. Beyond this point, the net change in culture density
declined with further increases in the initial density.
CCRIT is readily tunable in our system. Decreasing the degra-

dation rate constant of AHL (kdA) is predicted to increase CCRIT
(Fig. S2A): with faster AHL degradation, a higher bacterial
density is required to induce sufficient CcdA expression to res-
cue the population. One method to decrease AHL stability is to
increase the pH of the medium (23). We observed that CCRIT
increased by ∼100-fold when our engineered bacteria were
grown at pH 7.5 (compared with pH 7.0; Fig. S2 B–F). Inclusion
of leaky gene expression, a metabolic burden, nonlinear activa-
tion of ccdA, or stochastic dynamics in our model still leads to
a strong Allee effect (Fig. S2 G–J), which suggests that our
simple model (Eqs. 1 and 2) is sufficient to capture the dynamics
of our synthetic circuit.

A Biphasic Dependence of Population Spread on Dispersal. To guide
our dispersal experiments, we modified our model (Eqs. 1 and 2)
to account for the discrete transfer of bacteria from a source
patch to a target patch (Eqs. S20 and S21 and Fig. S3A). The
modified model also accounts for death of dispersing individuals
(Eq. S21 and SI Text) as dispersing individuals have increased
rates of mortality (24). The discrete transfer of bacteria mimicked
group dispersal, which has been observed in cooperative species
(Table S4). Spread is assumed to have occurred when robust
growth (an increase in OD greater than 0 as determine by a t test;
SI Text) occurs at both the source and target patches (1, 25).
We first examined dispersal where only one target patch is

present (n = 1, where n represents the number of target patches;
Fig. S3A). With the circuit OFF or ON + rescue, our model
predicts that spread would occur for all dispersal rates (initial
C = 0.05; Fig. 2A, Left and Right, respectively). With the circuit
ON, our model predicts a biphasic dependence of the total
growth (summed between the source and the target patches) on
the dispersal rate (Fig. 2A, Center). Total growth first increases
and then decreases with the dispersal rate. In the presence of
a strong Allee effect, growth at either the source or the target
patches increases with the initial C at the corresponding patch
(after dispersal). Thus, growth at the source patch will decrease
with dispersal rate (Fig. 2A, Center, black line) but growth at the
target will increase with dispersal rate (Fig. 2A, Center, green
line). When combined, total growth is maximized at intermediate
dispersal rates, resulting in an optimal dispersal rate, which leads
to the greatest amount of total growth.
To test these predictions, we emulated dispersal by transferring

a fixed volume of bacteria from one well of a 96-well plate (i.e.,
a source well) to a second well (i.e., a target well) after an initial
period of growth (SI Text). We chose an initial density in the
source well that was above CCRIT (5.8 ± 1.2 ×106 cfu/mL), such
that bacteria would grow for all circuit states (OFF, ON, or ON +
rescue) in the absence of dispersal. Our experimental system
validated these predictions: with the circuit ON (Fig. 2B, Center,
and Fig. S3 B and C), increasing dispersal rates promoted growth
at the target (green line) but reduced growth at the source (i.e.,
dispersal rates of 0.995 and 0.975; black line), leading to a bi-
phasic dependence of the total growth on dispersal rate (red line).
An optimal dispersal rate was observed at a dispersal rate of 0.375
where the highest amount of total growth was observed. In the
OFF and ON + rescue conditions, growth occurred at all dis-
persal rates (Fig. 2B, Left and Right). Inclusion of a death term
of nondispersing individuals, the implementation of continuous
dispersal, or stochastic dynamics in our model (Eqs. S22 and
S23) produce the same qualitative predictions of the biphasic
dependence of total growth on dispersal rate (Fig. S3 D–F and
SI Text).
This biphasic dependence demonstrates that presence of a

strong Allee effect can indeed account for the paradoxical
observations on dispersal and successful spread. Our experimental

system thus provides support for two key previous theoretical
predictions that have yet to be demonstrated experimentally:
slow dispersal can lead to insufficient growth at the target, but
fast dispersal serves as a drain at the source (SI Text).

Initial Source Density Determines the Range of Dispersal Rates That
Allow Spread. A prominent observation in several species is that
as the number of individuals released in a new area declines, so
does establishment and spread success (e.g., ref. 2). Intuitively,
populations with initial densities below CCRIT may be more likely
to go extinct. However, it remains unclear as to how the Allee
effect and dispersal control spread when the initial density at the
source patch increases above CCRIT.
Our model predicts that with the circuit ON, increasing the

initial C of the source population expands the range of dispersal
rates that allow spread (Fig. 3A). At a low initial C (0.007),
spread only occurs within a very small range of intermediate
dispersal rates (Fig. 3B, Left). Here total growth is the highest at
low dispersal rates where growth is reduced at the target but
occurs at the source. At an intermediate initial C (0.05), a larger
range of intermediate dispersal rates are predicted to promote
spread (Fig. 3B, Center), and the total growth is the highest
within this range. The range of intermediate dispersal rates that
promote spread is greatly expanded for a high initial C (0.3; Fig.
3B, Right). In contrast, when the circuit is OFF, our model
predicts that spread occurs regardless of the initial density or the
dispersal rate (Fig. S3 G and H).

Fig. 2. A strong Allee effect causes a biphasic dependence of spread on the
dispersal rate. (A) Bacterial densities (C) of a population containing our
synthetic circuit with increasing α (dispersal rate). When the circuit is OFF
(Left) or ON + rescue (initial rescue [A] = 0.1 μM; Right), spread (i.e., growth
at the source and target patch) is predicted to occur regardless of α. When
the circuit is ON (Center), spread is predicted to occur within a small range of
α, leading to a biphasic trend. Outside this range, growth is reduced at either
the source or the target patch. Total C is the summed densities between
both patches. Initial C = 0.05, t (simulation time) = 28 h. y axis scale is the
same for each panel. (B) Density of bacterial populations containing our
synthetic circuit with increasing dispersal rates. With the circuit OFF (−IPTG)
or ON + rescue (+IPTG/AHL), our engineered bacteria underwent spread
regardless of the dispersal rate (Left and Right, respectively). With the circuit
ON (+IPTG; Center), our engineered bacteria had a small range of dispersal
rates that led to spread. Outside this range, growth was reduced at either
the target or the source patch. The lowest and highest dispersal rates that
led to spread were 0.975 (P ≤ 0.04) and 0.025 (P ≤ 0.015, two-tailed t test; SI
Text). SD from at least four replicates. Initial density = 5.8 ± 1.2 × 106 cfu/mL.
OD at 28 h. y axis scale is the same for each panel.
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Our experimental results validated these predictions (Fig. 3C).
When cultures were grown with the circuit ON, spread only
occurred in a small range of dispersal rates when the source well
contained a low initial density of bacteria (6.1 ± 1.1 × 105 cfu/mL;
Fig. 3C, Left). As predicted, the most amount of growth oc-
curred at lower dispersal rates, where spread did not occur.
With a 10-fold increase in the initial density (intermediate initial
density, 5.8 ± 1.2 × 106 cfu/mL; Fig. 3C, Center), intermediate
dispersal rates led to spread. Here total growth is highest within
the range of dispersal rates that lead to spread. The range of
permissible dispersal rates was drastically expanded when the
initial density at the source well was increased by another 10-fold
(high initial density, 5.5 ± 1.4 × 107 cfu/mL; Fig. 3C, Right). In
contrast, with the circuit OFF, bacteria grew at both the source
and the target wells regardless of the dispersal rate or the initial
density of the source population (Fig. S3I).
These results suggest that species with a strong Allee effect

may have two different growth patterns when arriving in a new
territory with a population density slightly above CCRIT. One one
hand, species that disperse at a low rate will maximize their
density at the source population but fail to establish a population
at the target patch. On the other hand, species that disperse at
a high rate may spread; however, they face the added risk of
detracting from population growth should the dispersal rate not
fall within the biphasic growth area. As such, although high
dispersal rates would lead to successful spread when the initial
density is sufficiently above CCRIT, here it may serve to detract
from spread success, and population growth, when the initial
density is close to CCRIT.

A Tradeoff Between Effectiveness of Spread and Survival. A key
prediction of multitarget dispersal (in the absence of an Allee
effect) is that population growth increases with increasing
patches colonized making spread more prolific (20, 26). In the
presence of a strong Allee effect, however, simultaneous dis-
persal of a small amount of bacteria to each target patch (n) may
be insufficient to establish growth in the target patch but col-
lectively can detract too much from the population at the source
patch, which could lead to suppression of spread. This reasoning
suggests a tradeoff between efficiency and robustness of spread
and that increasing the number of target patches does not nec-
essarily guarantee more effective total spread.
Our model predicts that with the circuit ON, the biphasic de-

pendence of total C on dispersal rate is maintained when n > 1.
Moreover, increasing n from 1 to 3 can increase the maximum
total C for the overall population (Fig. 4 A and B). However, this
contracts the range of dispersal rates that allows spread, indicating
a tradeoff between efficiency and robustness of spread. Our model
predicts that a further increase in the number of targets (n = 5) not
only shrinks the range of dispersal rates that allow spread but also
reduces total C (Fig. 4B, Right Center). In other words, for a given
dispersal rate, spread also has a biphasic dependence on n. We
note that this biphasic dependence is transient because at the
steady state, bacteria in all target patches would grow to carrying
capacity (Fig. S4D). However, the contraction of dispersal rates
allowing spread observed as n increases is still observed at steady

Fig. 3. Dispersal rates allowing spread depend on the initial density at the
source patch. (A) Spread landscape in the presence of a strong Allee effect.
Increasing the initial bacterial density (C) at the source patch expands the
range of dispersal rates (α) allowing spread (i.e., growth at the source and
target patches). Total C is the summed densities at the source and target
patches. t (simulation time) = 28 h. (B) Slices of the spread landscape along
the x axis with different initial C. Low initial C = 0.007, intermediate initial
C = 0.05, and high initial C = 0.3. (C) Density of bacterial populations that
exhibit a strong Allee effect with varying initial densities. With the circuit ON
(+IPTG), increasing the initial source density by ∼100-fold increased the
range of dispersal rates allowing spread. The highest and lowest dispersal
rates that led to spread were 0.75 [P ≤ 0.005, two-tailed t test (SI Text)] and
0.125 (P ≤ 0.043) for low initial density, 0.975 (P ≤ 0.04) and 0.025 (P ≤ 0.015)
for intermediate initial density, and 0.995 (P ≤ 0.006) and 0.005 (P < 0.001)
for high initial density. SD from six replicates. Low initial density = 6.1 ± 1.1 ×
105 cfu/mL, intermediate initial density = 5.8 ± 1.2 × 106 cfu/mL, and high
initial density = 5.5 ± 1.4 × 107 cfu/mL. OD measured at 28 h.

Fig. 4. A tradeoff between efficiency and robustness of spread in multitarget
dispersal. (A) Spread landscape for multitarget dispersal in the presence of
a strong Allee effect. Increasing n (number of target patches) can lead to an
increase in the number of target patches colonized where maximum total C is
highest at an intermediate n. As n increases, the range of dispersal rates
allowing spread contracts. Total C is the summed densities of the source and
target patches. α represents the dispersal rate. Initial C = 0.05, t (simulation
time) = 28 h. (B) Slices of the spread landscape along the x axis with increasing
values of n. (C) Density of bacterial populations with increasing dispersal rate
and number of target wells. With the circuit ON (+IPTG), when the number of
target wells was increased from one to three, the maximum total growth in-
creased (P = 0.01; SI Text), but the range of dispersal rates allowing spread was
reduced. For five target wells, the range of dispersal rates allowing spread
further contracted, and total growth was reduced (P = 0.03). For 200 target
wells, growth was observed in the source well at low dispersal rates. At high
dispersal rates, growth was not observed. The highest and lowest dispersal
rates that led to spread were 0.975 (P ≤ 0.04, two-tailed t test; SI Text) and
0.025 (P ≤ 0.015) for n = 1, 0.975 (P < 0.001) and 0.05 (P ≤ 0.008) for n = 3, and
0.75 (P ≤ 0.003) and 0.125 (P ≤ 0.003) for n = 5. SD from six replicates.
Experiments initiated from an initial density of 5.8 ± 1.2 × 106 cfu/mL. OD
at 28 h. See SI Text and Fig. S4 for OD calculation.
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state. Furthermore, our model predicts that at n = 200, high dis-
persal rates cause complete population extinction, whereas low
dispersal rates allow growth at the source patch only (Fig. 4B,
Right). In contrast, with the circuit OFF, our model predicts the
population will undergo spread regardless of the number of target
patches (Fig. S4 A and B), and total C always increases with in-
creasing n. This result is observed transiently and at the steady
state (Fig. S4E).
Our experimental results validated these predictions (Fig. 4C

and Fig. S4 C and F–J). Experimentally, we assumed that transfer
to one target well could be used as a surrogate of transfer to
multiple wells (SI Text and Fig. S4J). We transferred the same
total amount of medium out of the source well but only trans-
ferred a fraction of the amount into a target well [calculated
relative to the number of target wells (e.g., five target wells: 125 μL
out of the source patch, 25 μL into a target patch, and the
remaining 100 μL was discarded)]. We then multiplied the final
bacterial density (OD) at 28 h by the total number of target
wells in the system (Fig. 4C). When cultures were grown with
the circuit ON and when the number of target wells was in-
creased from one to three, the range of dispersal rates allowing
spread contracted, and the maximum total growth (i.e., source
well + all target wells) increased (Fig. 4C, Left Center). With
five target wells, dispersal rates allowing spread further contracted
(Fig. 4C, Right Center), and total growth decreased. With 200
target wells, growth was not detected in either the source or target
wells at a high dispersal rate (Fig. 4C, Right). At low dispersal
rates, growth occurred in the source well only. When the circuit
was OFF, bacteria grew at all dispersal rates in both source and
target wells (Fig. S4). Our analysis demonstrated that a strong
Allee effect creates a tradeoff between efficient spread and sur-
vival: dispersing to multiple patches allows more efficient spread
but increases the risk of failing to spread or of going extinct.
Theoretical (27) and experimental analyses (28) have dem-

onstrated that as a population approaches a bifurcation point
(e.g., CCRIT), fluctuations in growth increase. Such fluctuations
may serve as early indicators of catastrophic population collapse
(28). Given the importance of such fluctuations toward predict-
ing population dynamics, particularly in species with an Allee
effect, we analyzed fluctuations in growth in target patches during
multitarget dispersal. Our stochastic model (Eqs. S22 and S23)
predicts that as α per n decreases, the distribution of lnC widens
(Fig. S5A), and coefficient of variance (CV) (Fig. S5B) increases
in the target patch. CV is predicted to be the lowest at dispersal
rates that lead to the greatest amount of growth in the target
patches. In contrast, with the circuit OFF, our stochastic model
predicts that the fluctuations do not change with α per n (Fig. S5
A and B).
To test these predictions, we dispersed our engineered bac-

teria to one, three, or five target wells and quantified OD in the
target wells. We observed that as dispersal rate per target patch
increased, the distribution of lnOD widened (Fig. S5C), and CV
increased (Fig. S5D) in the target patch. As predicted, CV was
the lowest at dispersal rates that led to the greatest amount of
growth in the target patches. In contrast, with the circuit OFF,
the distribution of lnOD (Fig. S5C) and the CV (Fig. S5D) in the
target well did not change significantly with dispersal rate per
patch or the number of target wells. Similar trends were observed
in the source well (SI Text). Our analysis indicates that fluctua-
tions at low dispersal rates may offer an additional explanation as
to why in some cases slow dispersal appears to lead to spread but
in other cases it fails to result in spread.

Discussion
Our analysis has provided experimental evidence validating pre-
vious theoretical predictions that a strong Allee effect can resolve
the opposite roles that dispersal has on spread success. As
reflected by our results in Figs. 3 and 4, the overall outcome of

spread critically depends on several environmental factors,
including the initial cell density in the source population, the
presence of absence of Allee effect, the dispersal rate, the num-
ber of target sites, and the time window of the growth. Each of
these factors has direct relevance to variables that are considered
critical in studies of invasive species. Our modeling analysis shows
that continuous dispersal (Fig. S3E) can also lead to a biphasic
dependence of the population spread on the dispersal rate, sug-
gesting that our conclusions are applicable in the absence of
group dispersal. Although our experimental framework accounts
for dispersal and different patches, it does not include additional
aspects of the environment (e.g., environmental heterogeneity
and evolution). Exclusion of these factors has allowed to us draw
more definitive conclusions on the contribution of dispersal and
habitat configuration to population spread.
Our results also reveal tradeoffs between spread and survival

for a cooperative species exhibiting a strong Allee effect. High
dispersal rates have been proposed to facilitate the spread pro-
cess (e.g., ref. 29 and SI Text). However, our experimental results
demonstrate that a high dispersal rate can detract from suc-
cessful spread. Furthermore, we have demonstrated that the
initial release size and dispersal influence spread success (Fig. 3).
We observed that populations with initial densities just above
CCRIT maximize their total growth at low dispersal rates, where
spread does not occur. Thus, fast dispersal could serve to limit
population growth and may not always be favored as previously
suggested. This tradeoff may explain why, during biological
invasions, spread is initially slow but tends to increase over time
(30). Species must achieve a minimum density in the source
population before spread will occur for a particular dispersal
rate. Our results may aid in guiding release sizes for reintroduced
species (31) and echo previous literature that cautions against
estimating the spread rate when a population is small (30).
Our results have also revealed that increasing the number of

target patches presents two tradeoffs (Fig. 4). First, increasing
the number of target patches decreases the range of dispersal
rates that allow for spread. As such, cooperative species with an
Allee effect face a tradeoff: increasing the number of target
patches can result in a more prolific spread but simultaneously
increases the risk of failing to spread or going extinct. Second,
dispersing to an intermediate number of target patches leads to
the highest population density in the short term. This result
contrasts with theoretical studies that suggest that increasing the
number of target patches colonized increases the total pop-
ulation monotonically (20). Therefore, cooperative species with
a strong Allee effect follow unique spread dynamics, which may
be dictated by the environment (i.e., number of target patches).
This may offer an additional explanation to the highly variable
spread rates observed during spread.
Our analysis has shown that as the dispersal rate per target patch

decreases, fluctuations in cell growth increase (Fig. S5). This ob-
servation is in line with previous studies that have found that as
a species approaches a survival threshold, an increase in fluctuations
in cell growth occurs (28). Our results serve to further extend this
notion to between-patch dispersal, where fluctuations may serve as
an indicator of population collapse in the target patches, and may
offer an additional explanation to account for the paradoxical re-
lationship between dispersal and spread.
These results have implications for intervention programs that

aim to limit control spread of a cooperative species. It has been
suggested that reducing dispersal between patches can reduce or
stop species from spreading (e.g., ref. 32). Intervention strategies
that can reduce or prevent dispersal into different areas of the
environment include a barrier zone (33), modification of the habitat
to reduce dispersal (32), or the regulation of dispersal vectors (34).
Our results may suggest that reduction of dispersal rate may be
counterproductive, and this may push a cooperative species into
a range of dispersal rates that allow optimal spread or increases
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total growth. Furthermore, limiting the number of target patches to
which a cooperative species is dispersing to may serve to increase
the total population density.

Materials and Methods
Model Development. Our circuit can be modeled by two delayed differential
equations (Eqs. 1 and 2 or Eqs. S10 and S11):

dC
dt

= μCð1−CÞ− γC
β+ ½Aðt − τÞ� [1]

d½A�
dt

= kAC − kdA½A�, [2]

where C represents the bacterial density, [A] represents the concentration of
AHL (μM), μ represents the maximum specific growth rate (h−1), kA represents
the synthesis rate constant of AHL (μM h−1), kdA represents the degradation
rate constant of AHL (h−1), τ represents the time delay of the activation of
gene expression by the LuxR–AHL complex (h), t represents simulation time
(h), γ is a lumped term that represents the killing rate of CcdB (μM h−1), and β
is a lumped term that represents the amount of CcdA leading to half-maximal
killing rate of CcdB (μM). In Eq. 1, growth is modeled by logistic kinetics, and

the AHL-mediated rescue is modeled as a Michaelis–Menten–type equation.
See SI Text for derivation of these equations.

Strains, Growth Conditions, and Circuit Characterization. We implemented the
circuit in E. coli strain DH5αPRO. Single colonies were grown overnight in LB
medium supplemented with chloramphenicol and kanamycin at 37 °C. Cul-
tures were diluted in M9 medium supplemented with 2% casamino acids
and 0.5% thiamine and buffered to pH 7.0 with 100 mM Mops. The circuit
was induced (i.e., circuit ON) by 1 mM of IPTG. To “rescue” a population with
circuit turned ON, 0.1 μM of 3-oxohexanoyl-homoserine lactone (AHL) was
added. For dispersal experiments, 200-μL cultures were grown in a 96-well
plate at 37 °C in a VICTOR 3 microplate reader. cfu counts were performed
on LB solid medium supplemented with chloramphenicol, kanamycin, 1 mM
IPTG, and 0.1 μM AHL. See SI Text.
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Strains, Growth Conditions, and Medium. Escherichia coli strain
DH5αPRO (Clontech) was used throughout this study unless
otherwise indicated. Unless otherwise noted, experiments were per-
formed in modified M9 medium [1X M9 salts (48 mM Na2HPO4,
22 mM KH2PO4, 862 mM NaCl, 19 mM NH4Cl), 0.4% glucose,
2% casamino acids (Teknova), 0.5% thiamine (Calbiochem),
2 mM MgSO4, 0.1 mM CaCl2] buffered to pH 7.0 with 100 mM
3-(N-morpholino)propanesulfonic acid (Mops). We inoculated
single colonies from an agar plate into 5 mL Luria–Bertani (LB)
medium (Genesee Scientific). To tightly control initial conditions,
overnight cultures were allowed to grow for 16 h. Short-term
agar storage plates containing individual colonies were replaced
every 2 wk. Unless otherwise indicated, all culture medium con-
tained 25 μg/mL chloramphenicol and 50 μg/mL kanamycin. The
gene circuit was activated (i.e., circuit ON condition) using 1 mM
isopropyl β-D-1-thiogalactopyranoside (IPTG). Where indicated,
the culture was supplemented with 0.1 μM 3-oxohexanoyl-
homoserine lactone (circuit ON + rescue, AHL; Sigma-Aldrich).

Circuit Construction (Fig. S1A). We engineered our synthetic circuit
on two plasmids. To create plasmid 1 [kanamycin resistance (KanR),
p15a origin of replication, ∼20–30 copies per cell (1)], the luxI gene
from pSND-1 (from Ron Weiss, Massachusetts Institute of Tech-
nology, Cambridge, MA) was amplified using PCR and cloned into
the plasmid pLuxR (2) using the BamH1 and NotI sites. The re-
sulting plasmid contained the Plac/ara (1) promoter driving the ex-
pression of luxR and luxI as a single transcript. To create plasmid
2 [chloramphenicol resistance (CmR), SC101 origin of replication,
∼3–4 copies per cell (1)], the Plux promoter and the ccdA gene were
fused using PCR and cloned into pPROtet.E (replication origin
ColE1; Clontech) using the Xho1 and AatII sites. The Plac-lac-
Zalpha-ccdBs (3) construct was amplified using PCR and cloned
into pPROtet.E (containing Plux-ccdA) using BamHI and NotI
sites. Finally, the replication origin of this plasmid was replaced
with SC101. This plasmid contained the Plac promoter driving ex-
pression of a modified ccdB gene (lacZalpha’-ccdBs) and the Plux
promoter driving the expression of ccdA. These plasmids were
simultaneously transformed into E. coli using a Z-competent
transformation kit (as per manufacturer’s specifications; Zymo
Research) and selected on LB agar plates containing chloram-
phenicol and kanamycin.

Determining the Allee Threshold (CCRIT), Growth Curves, and Circuit
Characterization (Fig. 1C and Fig. S1 B–D). To determine CCRIT, an
overnight culture was serially diluted in fresh M9 medium. Initial
cfu was determined as described previously (4). Two hundred
microliters of these cultures were added to a 96-well plate (REF
353219; BD Falcon). The remaining serially diluted culture was
supplemented with IPTG or IPTG and AHL. Two hundred
microliters of these cultures were then added to the 96-well
plate. All wells were overlaid with 50 μL of mineral oil, and the
plate was placed in a microplate reader (Victor 3; Perkin-Elmer)
prewarmed to 37 °C. The plate was shaken for 10 s, and optical
density (OD) at 600 nm was measured every 20 min for 28 h.
After 28 h, the bacterial culture was removed from the wells, and
cfu was determined. Growth curves were constructed using the
same protocol; however, OD was measured over 70 h, and final
cfu was not measured. Background OD from cell-free medium
was subtracted from each OD value.
We determined if 0.1 μM of AHL (circuit ON + rescue) was

sufficient to return the cells to their wild-type (circuit OFF)

specific growth rate. We calculated the average OD/min from 0.1
to 0.2 OD (region of exponential growth) and determined if the
specific growth rates were significantly different using a two-
tailed t test.

Modulating CCRIT (Fig. S2 A–F). Our model predicts that increasing
kdA will increase CCRIT. To test the prediction, we increased the
pH of the medium from 7.0 to 7.5, which has been shown to
cause faster degradation of AHL (5). We grew cells in this me-
dium in a microplate reader as described above and determined
CCRIT using cfu.
To ensure that modulating the pH of the medium did not alter

the growth rate, we grew cells in a microplate reader as described
above in M9 medium at pH 7.0 or pH 7.5. We calculated growth
rates using the differences in the natural logarithm of each OD
values at 20-min interval. We then divided this value by 20 to obtain
growth rate per minute. Changing the pH did not alter the growth
rate because both pH conditions led to identical maximum growth
rate (μmax) values and similar growth rates at all time intervals.
We tested the impact of changing pH on the stability of AHL

using a reporter strain. The reporter strain consisted ofE. coli strain
MG1655 containing two plasmids, one with the Plac/ara promoter
driving the expression of luxR (pLuxR, p15a, KanR) and a second
with the Plux promoter driving the expression of gfp(uv) [pluxGFP
(uv), ColE1, CmR]. In addition, to examine the effect of pH on
a constitutively expressed gene, we replaced pLuxR with a plasmid
where Plac/ara drives the expression of gfp(uv) [control strain, Plac/ara
GFP(uv), p15a, KanR]. We inoculated both strains from glycerol
stocks into M9 medium containing kanamycin and chloramphen-
icol and shook them for 8 h at 37 °C. In parallel, we incubated M9
medium (buffered to pH 6.5, 7.0, or 7.5) containing 0.1 μM AHL
at 37 °C for 8 h. After 8 h, we split the medium containing AHL
into two equal volumes and diluted either the reporter strain or
the control strain 100× into the medium. Each strain was then
shaken in this medium at 37 °C for 15 h. Cells were fixed with 1%
formaldehyde and were analyzed by flow cytometery (BD FACS-
Canto II; BD Falcon). We plotted the amount of GFP fluorescence
[arbitrary units (a.u.) based on FITC] from cells grown at each pH by
subtracting the baseline (∼280 units).
We also determined the impact that pH had on density-

dependent activation of the Plux promoter. We grew E. coli strain
MG1655 carrying plasmid 1 (see circuit construction) and plasmid
pluxGFP(uv) (see above) overnight at 30 °C in TBK medium (1%
tryptone, 0.7% KCl) (6) containing kanamycin and chlorampheni-
col buffered to pH 7.0 with 100 mM Mops. The following day,
the cells were diluted 10,000-fold into TBK medium containing
1 mM IPTG buffered to different pHs (using KOH). Note that the
starting density in each of the different TBK media was the same.
Two hundred microliters of each culture were then placed in a 96-
well plate, overlaid with 50 μL of mineral oil, and grown in a mi-
croplate reader at 30 °C with periodic shaking (i.e., every 10 min).
Both OD and GFP(uv) fluorescence were measured every 10 min.
We plotted GFP(uv) fluorescence (a.u., normalized by OD) as a
function of bacterial density (OD).

Dispersal Experiments (Figs. 2 and 3 and Fig. S3 B, C, and I). An
overnight culture was diluted in M9 medium. Two hundred
microliters of the diluted culture (without IPTG or containing
either IPTG or IPTGwith AHL) were added into the odd number
columns of a 96-well plate. These wells served as the surrogates of
source populations. Similarly, 200 μL of cell-free medium with-
out IPTG, containing IPTG, or containing IPTG with AHL was
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added into the even number columns of the same plate. These
wells served as the surrogates of the target patches. All wells
were overlaid with 50 μL of mineral oil, and the microplate was
placed in a prewarmed (37 °C) microplate reader. The plate was
shaken for 10 s followed by an OD measurement every 20 min
for 28 h. Transfer of the cells was performed at 6 h after the cells
were placed in the microplate reader. Before every transfer, all
wells were thoroughly resuspended. Culture was first transferred
from the source to the target well. The medium was well mixed
whereupon a volume of medium equal to that of the transfer
volume was removed from the target well. This served to keep
the total amount of medium in the target well at 200 μL. Note
that removal of medium from the target well after transfer re-
flected the αCtargetδ(t1) term in our equation (Eq. S21). Pre-
warmed medium was used to replace medium removed from the
source well. The volume of this added medium was equivalent to
that transferred to keep the volume of medium at the source well
at 200 μL. To maintain an accurate transfer volume, when less
than 0.5 μL was transferred, we diluted 1 μL of culture into fresh,
prewarmed medium and transferred a volume of this diluted
culture to the target or source well. We note that this small
deviation in experimental procedure had no observable bearing
on the results because the population in the source and target
well grew to carrying capacity at low and high dispersal rates,
respectively. For data analysis and presentation, background OD
from cell-free medium was subtracted from each OD value. Note
that we did notice some settling of the engineered bacteria (be-
ginning at ∼12 h for OFF and ON + rescue cultures and ∼24 h for
ON cultures). However, this is unlikely to qualitatively affect
overall cell growth because AHL and nutrients diffuse quickly in
liquid medium, the volume of medium (200 μL) is relatively
small, and the surface area that the bacteria can settle on is rel-
atively small.
To determine the dispersal rates that led to spread, we de-

termined if the OD value at 28 h was significantly higher than
zero using a two-tailed t test (i.e., robust growth). Spread only
occurs when robust growth is observed at both the source and
target patches at the same dispersal rate. We compared the dis-
persal rates leading to robust growth between each experimental
condition to determine if the range of dispersal rates contracted or
expanded. OD values below 0.01 were considered to be 0 as this is
below the reading capability of our microplate reader. In the figure
legends, we report the P values of the first dispersal rate that led to
spread (i.e., robust growth at the source and the patch). Additional
P values are not shown (i.e., for dispersal rates that did not lead to
robust growth or dispersal rates where growth in the source or the
target was clearly significantly different from zero).

Dispersal to Multiple Target Patches (Fig. 4 and Fig. S4 C and H–J).
Multiple target patch experiments were initiated as described in
Dispersal Experiments (Figs. 2 and 3 and Fig. S3 B, C, and I). We
assumed that the percentage of individuals leaving the source was
the same and that only the number of target patches of the envi-
ronment increased. As such, we transferred the same total amount
of medium out of the source well but only transferred a fraction of
the amount into a target well [calculated relative to the number of
target wells (e.g., five targets wells: 125 μL out of the source patch,
25 μL into a target patch, and the remaining 100 μL was dis-
carded)]. Note that we chose this approach due to the limitations of
our microplate reader. Statistical significance and robust growth
was determined as described in Dispersal Experiments (Figs. 2 and 3
and Fig. S3 B, C, and I). In addition, we used a two-tailed t test to
compare the amount of growth at the dispersal rate that led to the
greatest amount of growth for n = 1, 3, and 5.
We verified that one target well could function as a surrogate of

n target wells (Fig. S4J). We grew cells (with IPTG) as described
above and performed two types of experiments. To verify that
transfer to one well could act as a surrogate for transfer to three

wells, in one experiment, we transferred equal amounts of bac-
terial culture to three different target wells (i.e., 25 μL or 5 μL to
each of three wells) and summed the OD at 28 h of the three
wells. In a second experiment, we transferred the same amount
of bacterial culture to one well (i.e., 25 μL or 5 μL to one well)
but multiplied the OD value at 28 h by 3. We then compared the
summed OD values at 28 h produced by these two methods to
determine if one target well could function as a surrogate of n
target wells. We also repeated the above experiment to ensure
that one well could act as a surrogate of five wells by using five
wells (experiment 1) or by multiplying by five (experiment 2). We
note that verification of n = 200 was beyond the capability of our
microplate reader.

Stochasticity and Multiple Target Patches (Fig. S5 C and D). To an-
alyze fluctuations in cell growth in the target well, we used OD in
target wells at 28 h. We plotted lnOD of each target well and the
coefficient of variance (CV) as a function of dispersal rate per
target patch. Alternatively to the protocol described above
[Dispersal to Multiple Target Patches (Fig. 4 and Fig. S4 C and H–J)],
we dispersed cells to the actual number of target patches (i.e.,
when n = 3, we transferred cells to three different wells of a
96-well plate) but kept the overall experimental protocol iden-
tical. After 28 h, we measured the OD in each of the target
wells. We plotted lnOD of each target well and CV. We note
that analysis of the lnOD and CV in the source patch yielded
qualitatively similar trends. The removal of background fluctuations
by the microplate reader does not change our results qualitatively.

SI Results
Cooperation Can Lead to a Strong Allee Effect. A fundamental
property for the strong Allee effect is negative fitness (e.g.,
growth) below a critical population density. Here the population
grows only when starting from a density higher than the critical
population density. This property is observed in several contexts
throughout biology and is particularly relevant to cooperating
organisms. Several specific examples of these cooperative organ-
isms are summarized in Table S2.
The Allee effect is most often studied within the context of

studying terrestrial or aquatic animals. Specifically, the Allee
effect has been observed in noninvasive (7), invasive (8), and
endangered/reintroduced species (9). Although there are sev-
eral mechanisms (i.e., predation and inability to find mates)
(10) that can result in Allee effect in these contexts, several of
these involve cooperation, including cooperative breeding (11),
cooperative defense (12), cooperative feeding (13), and coopera-
tive temperature regulation (14).
A strong Allee effect also is prevalent in infectious disease. The

concept of a minimal infective dose, whereby a pathogen cannot
infect a host if the pathogen is below a critical density, is well
established (15–17). It has been hypothesized that in some cases,
a minimal infective dose is required for the infectious agent to
cooperate and release sufficient quantities of diffusible molecule
to overwhelm the immune system (15). Similarly, several patho-
gens cannot activate virulence factors below a critical population
threshold and are thus prone to clearing by the immune system
(18, 19). Many pathogens form antibiotic-resistant biofilms (20–
22) and can be regulated through density-dependent quorum
sensing signals (23). Finally, an Allee effect is also observed in the
inoculum effect, where a given density of bacteria cooperates to
grow in the presence of an antibiotic (24, 25).
Although not commonly referred to as a strong Allee effect in

epidemiology, several models have assumed this property. In
these models, for a given range of basic reproduction ratio values
(Ro), the factor that determines whether a disease successfully
spreads within a population is determined by the initial number
of infected individuals or pathogens introduced into a population
of susceptible individuals (26). Nonconstant transmission rates
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that produce this bistability have been used in susceptible-
infected-removed (SIR) (27) and susceptible-infected-susceptible
(SIS) (28, 29) models. Although these models do not necessarily
account for cooperation between infected individuals explicitly,
they are nevertheless relevant the context of our manuscript (i.e.,
Allee effect and dispersal).

Defining the Allee Effect. In our study, we have adopted the textbook
definition of Allee effect: the overall fitness (or one of its compo-
nents) is positively related to population size or density (10, 30–32).
We chose this definition because it appears to be the most consis-
tent definition in the literature, although many additional defi-
nitions of the Allee effect have been proposed (reviewed in ref. 10).
We note that this definition, or very similar definitions, is applicable
(and has been applied previously) to both well-mixed systems, both
nonspatial (e.g., ref. 33) and spatial (e.g., refs. 34 and 35), and
nonmixed spatial systems (e.g., ref. 36). Alternative definitions for
the Allee effect include inverse density dependence (37), dispen-
satory dynamics (or depensation) (38), and sigmoidal dose de-
pendence (16). Additional definitions, including strong and weak
Allee effects and demographic and component Allee effects, are
formally reviewed elsewhere (10, 31).

Theoretical Studies Examining Dispersal, Spread, and the Allee Effect.
The paradoxical relationship between dispersal and spread suc-
cess is founded and observed from many studies in the literature.
On one hand, several studies have shown that high dispersal
promotes successful spread (39–44). We note that several studies
have also demonstrated that high dispersal is often favored (or
selected for) during a biological invasion (45–47). On the other
hand, several studies have also found dispersal to be negatively
associated with successful spread (48–51). In some studies, as
outlined below, the Allee effect has been used to explain these
conflicting trends.
Several previous studies have used spatial models to examine

how the Allee effect and dispersal interact during the spread
process. Most pertinent to our study are those that demonstrate
that insufficient dispersal will not allow an established colony to
spread and that sufficiently fast dispersal can act as a drain on an
established population. In support of the former, Keitt et al.
developed a spatially discrete ordinary differential equation model
(with patchy landscapes) to show that insufficient dispersal can
prevent spread into new areas (52). Similarly, Hadjiavgousti and
Ichtiaroglou used a heuristic, discrete space–time model consist-
ing of a one-dimensional chain of identical sites to demonstrate
a similar phenomenon (53). Finally, Veit and Lewis (54) used
a reaction–diffusion model to offer an explanation for the slow
spread of introduced house finches. Here they postulated that
insufficient dispersal and the Allee effect inhibited the spread
rate during the initial stages of the invasion. In support of the
latter, South and Kenward used a stochastic, individual-based,
spatially continuous model consisting of a grid of homogenous
hexagonal cells to examine how dispersal distance and mate-
finding abilities affects spread (55). They observed that high
dispersal distance (and low mate finding) could result in pop-
ulation decline (and thus no spread). Robinet et al. used a ho-
mogenous spatially explicit individual-based lattice model to
examine the effect of dispersal on mating and survival (56). They
observed that as temporal or spatial dispersal was increased,
a reduction in mating success, and thus proliferation of the es-
tablished colony, was observed. In a follow-up study, Robinet and
Liebhold used a spatially explicit, stochastic individual-based
model where the exact location of each individual was mapped in
a continuous space that did not contain boundaries (36). Using
this model, they observed that as dispersal increased, growth rates
and the probability of establishment declined significantly.

Dispersal to Target Patches in the Environment. Several species (e.g.,
refs. 57–60), including those with a strong Allee effect (61), have
been observed to colonize multiple target patches outside of
a single heavily colonized area. It has been postulated that this
dispersal may result from spatial heterogeneity in the environ-
ment (e.g., ref. 62). Spatial heterogeneity arises from an envi-
ronment where there is a discontinuous distribution of patches
that are suitable for colonization (e.g., ref. 63). As such, con-
tinuous spread from the source patch to all patches is not pos-
sible. This leads to multiple, isolated target patches becoming
colonized outside of the source patch. Furthermore, stratified
dispersal (e.g., refs. 59, 64, and 65) may also allow the coloni-
zation of multiple areas outside of a central area of growth (i.e.,
source). Here growth outside the source does not occur in dis-
crete patches but occurs in a homogeneous environment where
individual colonies can grow and coalesce with each other.
Our experimental system was designed to mimic this critical

aspect of the spread process, mainly to show that dispersal can
occur to separate distinct areas of the environment that sit
outside of the central area of growth (i.e., source patch). To
accomplish this, our theoretical system consists of two patches:
a source patch, where a population of organisms initially resides,
and a target patch, where the population at the source patch can
disperse. The bacteria in each of the patches are well mixed, and
we do not consider any measure of distance between the patches.
Although the aforementioned studies (Theoretical Studies Ex-
amining Dispersal, Spread, and the Allee Effect) use multiple
modeling frameworks to examine spread (i.e., spatially continu-
ous homogenous systems and patchy systems), the use of a two-
patch system is a well-established method to study dispersal (66,
67), as well as dispersal for species with an Allee effect (28, 34,
68). Using this theoretical approach allowed us to connect our
theoretical system to our experimental systems. Furthermore,
due to its relative simplicity, we could draw conclusions without
taking into account multiple interacting factors of spatial spread
observed in other theoretical models (e.g., distance, spread rate,
and stochasticity).

Model Development (Fig. 1B and Fig. S1B). We model the synthetic
bacterial population using five delayed differential equations:

dC
dt

= μCð1−CÞ− kkill½CcdB�
K + ½CcdB�C [S1]

d½A�
dt

= kAC− kdA½A� [S2]

d½CcdA�
dt

= kca½Aðt− τÞ�− kd1½CcdA�− kf ½CcdA�:½CcdB�
+ kb½CcdA−CcdB� [S3]

d½CcdB�
dt

= kI − kd2½CcdB�− kf ½CcdA�:½CcdB�+ kb½CcdA−CcdB�
[S4]

d½CcdA−CcdB�
dt

= kf ½CcdA�:½CcdB�− kb½CcdA−CcdB�
− kd3½CcdA−CcdB� [S5]

where C represents the bacterial density normalized with respect
to the carrying capacity and is unitless, [A] represents the con-
centration of AHL (μM), [CcdA] represents the concentration of
CcdA (antidote) (μM), [CcdB] represents the concentration of
CcdB (toxin) (μM), [CcdA–CcdB] represents the concentration
of the CcdA–CcdB complex (μM), μ represents the maximum
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specific growth rate (h−1), K represents the CcdB concentration
that gives rise to the half maximal killing rate (μM), kkill repre-
sents the bacterial killing rate by CcdB (h−1), kA represents the
synthesis rate constant of AHL (μM h−1), kdA represents the
degradation rate constant of AHL (h−1), kca represents the ex-
pression rate constant of CcdA (h−1), τ represents the time delay
of the activation of gene expression by the LuxR–AHL complex
(h), t represents time (h), kd1 represents the degradation rate
constant of CcdA (h−1), kf represents the association rate con-
stant of CcdA to CcdB (h−1), kb represents the dissociation rate
constant of CcdA–CcdB complex (μM−1 h−1), kI represents the
synthesis rate constant of CcdB (μM h−1), kd2 represents the
degradation rate constant of CcdB (h−1), and kd3 represents
the degradation rate constant of CcdA–CcdB complex (h−1).
In this model, we assume that AHL diffusion is much faster than

gene expression or growth kinetics, such that the concentrations of
the intracellular AHL and extracellular AHL are equal (69). As
a result, the synthesis rate of AHL is linearly dependent on C [the
first right-hand-side (RHS) term of Eq. S2]. Our circuit would only
be activated by intracellular AHL because the LuxR receptor is an
intracellular receptor (70). We assume that the synthesis rate of
CcdA is linearly dependent on AHL concentration with a time
delay due to circuit activation (Eq. S10 and the first RHS term of
Eq. S3) and that the synthesis rate of CcdB is constant (controlled
directly by IPTG) (the first RHS term of Eq. S4). Production rates
are given per cell, with the exception of AHL.
Assuming the CcdA–CcdB complex, CcdA, and CcdB to be at

quasi-steady state, we obtained Eqs. S6–S8 (from Eqs. S3–S5):

½CcdA−CcdB�= kf ½CcdA�:½CcdB�
kb + kd3

[S6]

½CcdA�≈ kca½Aðt− τÞ�
kd3kf ½CcdB�
kb + kd3

[S7]

½CcdB�≈ kI − kca½Aðt− τÞ�
kd2

[S8]

In the solution of Eq. S7, we have simplified the equation by
taking into account that the degradation rate of CcdA is faster
than that of CcdB (71), the dissociation constant of CcdA–CcdB
complex is ∼0.032 nM (72), and the concentration of CcdB is
greater than 10 molecules per bacterium (10 nM) due to pro-
moter activation by IPTG (1). These simplifying assumptions can
be relaxed, which will lead to a different (more complex) form of
the final equations. However, these alternative equations would
generate qualitatively the same predictions (e.g., generation of
Allee effect when the circuit is induced; not shown).
We substitute Eq. S8 into Eq. S1 and obtain Eq. S9:

dC
dt

= μCð1−CÞ− γC
β+ ½Aðt− τÞ�; [S9]

where γ = kkillk2I
kd2kcaK

(μM h−1) and β = kI
kca

�
1+ kI

Kkd2

�
(μM). To estimate

the magnitude of the lumped parameters, we first estimated
several parameters based on literature data (Table S3). We used
these parameters to estimate the magnitude of the lumped pa-
rameters γ and β. To estimate kI, we used previously reported
values of transcription (73) and translation rates (74), cell vol-
ume [∼4 × 10−15 L (75)], the time required for protein folding
(∼10 s per protein, estimated), and the molecular weight of
our modified CcdB (∼21.36 kDa). We estimated that γ would
have a magnitude of 0.001 μM h−1 and β would have a magni-
tude of 0.001 μM.

Therefore, Eqs. S1–S5 can be simplified to the following two
delayed differential equations:

dC
dt

= μCð1−CÞ− γC
β+ ½Aðt− τÞ� [S10]

d½A�
dt

= kAC− kdA½A�: [S11]

Previous studies have reported the induction threshold of the
LuxR/3-oxohexanoyl-homoserine lactone (3OC6HSL) system at
∼0.005–0.010 μM and maximal induction at ∼0.7 μM of DL-
3OC6HSL (76). However, 0.1 μM of DL-3OC6HSL (76) leads to
near maximal induction of the luxR system and was therefore
selected as the quantity of AHL to add to experimental analyses
for control experiments. Finally, LuxR–AHL complex reaches
quasi steady states quickly (77) and therefore was not explicitly
accounted for in our set of equations.
To obtain parameters for Eqs. S10 and S11, we estimated μ by

using the growth data presented in Fig. S1C. τ was first estimated by
examining the time point (h) at which growth was detected in in-
duced cultures (i.e., growth with IPTG) in the microplate reader
(Fig. S1C). We took this value and divided it by half to account for
the time required to synthesize ccdA, for ccdA to bind to ccdB, and
for cells to recover. Previous studies have found that rescue after
poisoning with ccdB causes cells to have a recovery time (78). The
order of magnitude of β and γ were estimated as described above.
We then fit the values of β and γ to our experimental data. Pa-
rameters of the simplified model are presented in Table S3.

Leaky Expression of AHL (Fig. S2G). To examine the impact of leaky
expression of AHL on system dynamics, we modified Eqs. S10
and S11 to Eqs. S12 and S13:

dC
dt

= μCð1−CÞ− γC
β+ ½Aðt− τÞ� [S12]

d½A�
dt

= kleaky + kAC− kdA½A�; [S13]

where kleaky represents the leaky expression of AHL (μM h−1). In-
clusion of a small basal (or leaky) expression term of AHL synthesis
in our model does not affect the qualitative predictions of the model
(Fig. S2G). However, for a large basal expression value, a strong
Allee effect is not observed, which thus conflicts with results pre-
sented in Figs. 1C and 2B. Previous studies using the promoters
implemented in our synthetic circuit have observed nearly undetect-
able expression when the promoter remains uninduced (1). Al-
though we did not explicitly check for leaky expression in our
experimental system (i.e., the concentration of AHL in uninduced
cultures), the leaky expression is likely <10−4 μMh−1 and appears to
not fundamentally influence our experimental results.

Metabolic Burden of AHL Expression (Fig. S2H). To examine the
impact of metabolic burden of AHL expression on system dy-
namics, we modified Eqs. S10 and S11 to Eqs. S14 and S15:

dC
dt

=
μ

1+ ½A�=kmet
Cð1−CÞ− γC

β+ ½Aðt− τÞ� [S14]

d½A�
dt

= kAC− kdA½A�; [S15]

where kmet represents the scaling constant of specific growth
rates μ with respect to the amount of AHL (μM). A low kmet
value would give rise to a strong metabolic burden of AHL
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expression. Inclusion of the metabolic burden associated with
the expression of AHL increases the amount of time required
to reach steady state but does not qualitatively alter our re-
sults (Fig. S2H). A sufficiently large metabolic burden (Fig.
S2H, brown line) does not allow cell growth to occur.

Nonlinear Activation of AHL Expression (Fig. S2I). To examine the
impact of nonlinear CcdA synthesis on system dynamics, we mod-
ified Eqs. S10 and S11 to Eqs. S16 and S17:

dC
dt

= μCð1−CÞ− γC

β+
½Aðt− τÞ�2

K2
AHL + ½Aðt− τÞ�2

[S16]

d½A�
dt

= kAC− kdA½A�; [S17]

where KAHL represents the half maximal constant of AHL-mediated
gene expression (μM). We note that this alternative model that
considered the activation of the ccdA gene via a LuxR–AHL dimer
complex (modeled as a Hill’s function) produced qualitatively the
same results. We used a cooperativity value of 2, which is slightly
larger than the values (0.85–1.6) reported previously (79, 80).

Stochastic Model of Allee Effect (Fig. S2J).Although our model (Eqs.
S10 and S11) is deterministic, stochastic models (accounting for
stochastic environmental components or demographic compo-
nents) have also been used to study the Allee effect. To examine
the influence of stochasticity in our model, we modified Eqs. S10
and S11 to Eqs. S18 and S19:

dC=
�
μCð1−CÞ− γC

β+Aðt− τÞ
�
dt

+N1ð0; σÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����μCð1−CÞ− γC

β+Aðt− τÞ
����

s ffiffiffiffi
dt

p
[S18]

d½A�= ðkAC− kdA½A�Þdt+N2ð0; σÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkAC− kdA½A�j

p ffiffiffiffi
dt

p
; [S19]

where N(0,σ) represents white noise with SD σ. In the stochastic
model containing an Allee effect, CCRIT becomes probabilistic,
which has a dual effect on establishment: it can increase the
likelihood of population extinction when the population is above
CCRIT and can increase the likelihood of population establish-
ment when the population is below CCRIT. This observation is
consistent with a previous theoretical study (81). Stochasticity in
models of population establishment without an Allee effect can
also result in extinction of small populations due to demographic
stochasticity (81); however, this is often not considered to be
a true Allee effect. We did not perform statistical analysis for
robust growth using the stochastic equations.

Modeling Between-Patch Dispersal (Figs. 2A, 3 A and B, and 4 A and B
and Figs. S3 D, E, G, and H; S4 A, B, and D–G). To model the between-
patch dispersal, we extend our base model (Eqs. S10 and S11) by
including a discrete dispersal parameter (δ) to model the transfer
of a fraction of bacteria (α, dispersal rate) from the source patch
to the target patch and a death term to account for death or loss
of bacteria during transfer:

dCsource

dt
= − αCsourceδðt1Þ+ μCsourceð1−CsourceÞ− γCsource

β+
�
Aðt− τÞsource

	
[S20]

dCtarget

dt
= αCsourceδðt1Þ+ μCtarget



1−Ctarget

�
−

γCtarget

β+
�
Aðt− τÞtarget

	− αCtargetδðt1Þ; [S21]

where δ(t1) is a dirac delta function with t1 = kT0 and T0 repre-
sents the period of transfer. Csource and Ctarget represent the bac-
terial density at either the source or the target patches. In both
cases, bacterial density is normalized to the carrying capacity and
is unitless.
The first RHS terms in both Eqs. S20 and S21 represent the

discrete dispersal of a bacterial population. We note that α may
not constitute the true definition of a rate; however, the term
“dispersal rate” has been used to describe both continuous and
discrete (e.g., ref. 82) dispersal in the literature. The inclusion
of the death term (the fourth RHS term) in Eq. S21 repre-
sents the increased mortality observed during dispersal events
(83–85). Exclusion of the term from our model continues to
produce a biphasic relationship between dispersal and spread,
as does the inclusion of a death term for individuals at the
source (i.e., those that do not disperse; Fig. S3D). If dispersal
is modeled as a continuous function, the model continues to
predict a bisphasic relationship between dispersal rate and
spread (Fig. S3E). In the implementation of our model, we
also account for the transfer of AHL between the wells but do
not account specifically for the memory of the LuxR–AHL
complex. Previous studies have indicated that the LuxR–AHL
complex is unstable once the concentration of AHL drops
below the activation threshold (77).
Several studies have indicated that between-patch dispersal can

occur via long-distance dispersal, which is most often mediated by
nonnatural means, such as human transport (57). Although
our model can be used to describe this type of dispersal, our
model does not explicitly assume any measure of distance but
simply assumes that growth, and the accumulation of AHL,
is independent in both populations (i.e., source and target
populations).

Modeling Stochasticity in Between-Patch Dispersal (Figs. S3F and S5 A
and B). To examine the influence of stochasticity in our dispersal
model, we modified Eqs. S20 and S21 to Eqs. S22 and S23:

dCsource =

 
−αCsourceδðt1Þ+ μCsourceð1−CsourceÞ

−
γCsource

β+
�
Aðt− τÞsource

	
!
dt+N1ð0; σÞ

ffiffiffiffi
dt

p
[S22]

dCtarget =

 
αCsourceδðt1Þ+ μCtarget



1−Ctarget

�

−
γCtarget

β+
�
Aðt− τÞtarget

	− αCtargetδðt1Þ
!
dt+N2ð0; σÞ

ffiffiffiffi
dt

p
;

[S23]

where N(0,σ) represents white noise with SD σ. Implementation
of this model continues to predict a biphasic relationship be-
tween dispersal rate and spread.
To examine fluctuations in C in the target patch, we used noise

of SDE of 0.01 and noise of transfer of 0.1. Initial C was 0.5, and
t = 28 h.
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Fig. S1. Plasmids and growth curves of our engineered bacteria. (A) The circuit conferring a strong Allee effect was created in E. coli using two plasmids.
Replication origin and antibiotic resistant marker are described in parentheses. Promoters (red arrows, where the direction of the arrow indicates orientation),
ribosomal binding sequences (RBS; blue lines perpendicular to plasmid), genes (orange arrows), and terminators (blue lines parallel to plasmid) are indicated on
each plasmid. Size of the plasmid [in base pairs (bp)] is indicated below the name of the plasmid. kanR and cmR confer KanR and CmR. Construction of the
plasmids, including estimated copy number per cell, is described in SI Materials and Methods. (B) Simulated growth curves of our engineered bacteria. With the
circuit OFF or ON + rescue, bacterial density (C) is predicted to increase regardless of the initial C. With the circuit ON, bacterial density increases only when
the initial C is sufficiently high; otherwise, the population goes extinct. (Top) High initial C = 5 × 10−3. (Middle) Low initial C =5 × 10−6. (Bottom) The same data
asMiddle but y axis is plotted on log scale. [A] (ON + rescue) = 0.1 μM. (C) Experimental growth curves of our engineered bacteria. With the circuit OFF (−IPTG)
or ON + rescue (+IPTG/AHL), bacterial density increased at both low (Middle) and high (Top) initial bacterial densities. With the circuit ON (+IPTG), cultures
initiated with a sufficiently high density grew, whereas those with a low initial density did not grow. High initial density was initiated from ∼108 cfu/mL. Low
initial density was initiated from ∼104 cfu/mL. (Bottom) The same data as Middle but the y axis is plotted on a log scale. Bacteria grown in the OFF and ON +
rescue conditions have similar specific growth rates (P = 0.18, two- tailed t test; SI Materials and Methods). This suggests that 0.1 μM AHL can likely lead to
sufficient production of CcdA to inhibit CcdB. SD from three replicates. (D) Bistability plot of our engineered bacteria. With the circuit OFF (−IPTG) or ON +
rescue (+IPTG/AHL), the number of cfus observed after 28 h was positive regardless of initial cell density. With the circuit ON (+IPTG), cfus were not detected
after 28 h below an initial density of ∼104 cfu/mL. Otherwise, the number of cfus increased. Note that these data are identical to those plotted in Fig. 1C. When
cfufinal was 0, a result of negative infinity was obtained. SD from three replicates.
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Fig. S2. Modulation of CCRIT in our engineered bacteria. (A) Our model predicts that increasing kdA [degradation rate of AHL (h−1) indicated on curve] in-
creases CCRIT. Specific growth rate was calculated using Δ(lnC)/Δt at t (simulation time) = 100 h. (B) The effect of increasing the pH of the medium on CCRIT. We
surmised that increasing pH would increase the degradation rate of AHL and would thus increase CCRIT. When the pH of the medium was increased from 7.0 to
7.5, CCRIT shifted from ∼104 cfu/mL to ∼106 cfu/mL. Change in cfu/mL was calculated at 28 h using ln(cfufinal) − ln(cfuinitial). When cfufinal was 0, a result of
negative infinity was obtained. SD from three replicates. Lines are drawn as a guide. (C) Changing pH of the medium did not affect overall growth rate.
Bacteria grown at either pH 7.0 or pH 7.5 had the same maximum growth rates (μmax), and the growth rates were nearly identical over the first ∼700 min.
Growth rate was calculated using data with 20 min measurement intervals (SI Materials and Methods). SD from five replicates. (D) Increasing the pH of the
growth medium decreased the amount of GFP fluorescence [arbitrary unit (a.u.)] in an AHL reporter strain [the Plux promoter (activated by AHL) driving the
expression of luxR and gfp(uv)]. This result is consistent with the literature data (86) that AHL stability is reduced in higher pH, which would lead to lower AHL
concentration in our system. GFP intensities are different between each pH (P = 0.04, one-way ANOVA). SD is calculated using three replicates. (E) Increasing
the pH of the growth medium had no effect on the GFP fluorescence (a.u.) in a control strain [the Plac/ara promoter driving gfp(uv)]. GFP intensities are not
different between each pH (P = 0.15, one-way ANOVA). SD is calculated using three replicates. (F) Increasing the pH of the growth medium increased the
bacterial density required to activate expression [measured at GFP(uv) fluorescence normalized to OD] from the AHL-driven Plux promoter. Activation of Plux
occurs once a sufficiently high density of AHL is reached (2). The time to reach this density is determined by bacterial density as each cell synthesizes AHL at
a given rate. Increasing the degradation rate of AHL would serve to increase the bacterial density required to achieve the AHL density required to activate
expression from Plux. Data plotted as an average of four replicates. (G) Specific growth rates [Δ(lnC)/Δt for all panels] at different initial C (bacterial density)
with increasing leaky expression rate constants of AHL. With the circuit ON, increasing leaky expression of AHL shifts CCRIT to lower initial C. When AHL leaky
expression exceeds a threshold, where leaky expression of AHL exceeds density-dependent expression of AHL, a strong Allee effect is no longer observed.
Consistent with our circuit design, this simulation result corroborates that the leaky expression of AHL in our system is likely lower than the density-dependent
expression of AHL. Each line represents a different value of kleaky (μM h−1). t (simulation time) = 50 h. Please refer to SI Results for detailed model description.
(H) Specific growth rates at different initial bacterial densities with increasing metabolic burden of AHL expression. With the circuit ON and with increasing
metabolic burden, CCRIT shifts to higher initial C until the cells can no longer grow (specific growth rate is negative for all initial C). Each line represents
a different value of kmet (μM). t (simulation time) = 50 h. Please refer to SI Results for detailed model description. (I) Specific growth rates at different initial
bacterial densities with increasing half maximal constants of activation of CcdA expression. With the circuit ON and with increasing half maximal constants,
CCRIT shifts to higher initial C. The results suggest that our linear approximation of CcdA dependence on AHL is appropriate (Eq. S3). The modification of this
linear approximation to a Michaelis–Menten–type equation does not change the qualitative shape of the Allee curve. Each line represents a different value of

Legend continued on following page
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KAHL (μM). t (simulation time) = 100 h. Please refer to SI Results for detailed model description. (J) Specific growth rates at different initial bacterial intensities
with stochastic system dynamics (Left). With stochasticity, CCRIT is not an exact value because a certain population can grow, whereas others go extinct (Right).
Furthermore, specific growth rates exhibit high SD near CCRIT, which may explain the increased variability of cell growth observed in Fig. 3C, Left. Each SE or the
mean is calculated using results from 100 stochastic simulations. t (simulation time) = 50 h.

Fig. S3. Using our engineered bacteria to study dispersal, initial density, and spread success. (A) A conceptual framework for studying dispersal and spread
using our engineered bacteria. For between-patch dispersal, a fraction of individuals from the source patch could disperse to n target patches with a dispersal
rate of α (measured as the fraction of individuals leaving the source patch). As such, our framework is a two-patch system, where dispersal can occur from the
source to the target patch (but not in reverse). We do not consider a distance between the source and target sites. The populations at both the source and
target sites are well mixed. Blue circles represent well-mixed bacteria. (B and C ) Exemplary growth curves for dispersal experiments with an initial density
of 5.8 ± 1.2 × 106 cfu/mL. For both B and C, the top and bottom rows of each panel are exemplary of two replicates. The black and green lines represent
bacterial density (OD) in the source and the target wells, respectively. Dispersal rate is calculated as the fraction of medium removed from the source well and
then transferred to the target well. Target wells (n) = 1. (D–F) Various implementations of our equation describing the dispersal of bacteria from the source to
one target patch [final bacterial density (C) with increasing dispersal rate (α)]. (D) The implementation of a basal death term for the source well does not
change our conclusions. Bacterial growth still exhibits a biphasic dependence of population spread on dispersal rate. Initial C = 0.05, t (simulation time) = 28 h.
(E) Final Cwith increasing continuous dispersal rates. Continuous dispersal of bacteria results in a biphasic dependence of population spread and dispersal rate.
Parameters used in the model are described in Table S3. Initial C = 0.05, t (simulation time) = 28 h. (F) Final C with increasing dispersal rates using a stochastic
model. The inclusion of stochastic dynamics still results in a biphasic dependence of population spread on dispersal rate. Each SEM is calculated using results
from 100 stochastic simulations. Total simulation time (t) is 50 h. See detailed model description in Eqs. S22 and 23. (G) Simulated spread landscape in the
absence of a strong Allee effect. With the circuit OFF, spread (i.e., growth at both the source and target patches) occurs regardless of initial C (bacterial density)
at the source patch and when 0 < α < 1. Total C is the sum of the densities at the source and target patches. α represents dispersal rate. t (simulation time) =
28 h. (H) Slices of the spread landscape along the x axis with different initial C. Low initial C = 0.007, intermediate initial C = 0.05, and high initial C = 0.3. (I)
Density of bacterial populations without a strong Allee effect with varying initial bacterial densities. With the circuit OFF (−IPTG), bacteria grew at both the
source and the target wells regardless of initial bacterial density and dispersal rate. SD from six replicates. Low initial density = 6.1 ± 1.1 × 105 cfu/mL, in-
termediate initial density = 5.8 ± 1.2 × 106 cfu/mL, and high initial density = 5.5 ± 1.4 × 107 cfu/mL. OD was measured at 28 h. Lines are drawn as a guide.
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Fig. S4. Without a strong Allee effect, spread occurs regardless of dispersal rate and the number of target sites. This figure also shows raw data for mul-
titarget patch experiments (OD for one target patch is shown). OD values shown in H and I are multiplied by the number of target patches (n) to produce the
data shown in Fig. 4 and Fig. S4C (SI Materials and Methods). (A) Simulated spread landscape for multitarget dispersal in the absence of a strong Allee effect.
With the circuit OFF, our model predicts that spread occurs regardless of n when 0 < α < 1. Initial C = 0.05, t = 28 h. (B) Slices of the spread landscape along the
x axis with increasing values of n. n is indicated in each panel. (C) Density of bacterial populations with increasing dispersal rate and number of target wells. With
the circuit OFF, spread occurs regardless of dispersal rate when the number of target wells was 1, 3, 5, or 200. SD from six replicates. The density of each target
well was obtained by multiplying the target well by n as described in SI Materials and Methods. Experiments initiated from an initial density of 5.8 ± 1.2 × 106

cfu/mL. OD was measured at 28 h. Lines drawn as a guide. (D) Simulated spread landscape at steady state. The transient increase at intermediate values of n
(number of target patches) is no longer observed. However, as n increases, the range of dispersal rates (α) allowing spread continues to decrease. t = 1,000 h.
(E) Simulated spread landscape at steady state. Spread occurs at all values of n regardless of α. t = 1,000 h. (F) Model predictions for multitarget patch ex-
periments in the absence of a strong Allee effect (i.e., circuit OFF) when only one target patch (of all total patches) is considered. (G) Model predictions for
multitarget patch experiments in the presence of a strong Allee effect (i.e., circuit ON) when only one target patch (of all total patches) is considered. (H)
Density of bacterial populations that do not exhibit an Allee effect (circuit OFF, −IPTG) with increasing dispersal rates and increasing number of target wells.
Our experimental system confirmed our modeling predictions. For all panels containing experimental data, the number of target wells is indicated in each
panel. Experiments were initiated from an initial density of 5.8 ± 1.2 × 106 cfu/mL. OD was measured at 28 h. Lines drawn as a guide (for both C and D). (I)
Density of bacterial populations that exhibit a strong Allee effect (circuit ON, +IPTG) with increasing dispersal rates and increasing number of target wells. Our
experimental system confirmed our modeling predictions. (J) To produce the data in Fig. 4 and in Fig. S4C, we assumed that one well could function as
a surrogate of n wells. We confirmed this assumption as described in SI Materials and Methods. Light gray bars represent the OD from dispersal that occurred
to one target well that was then multiplied by the total number of target wells [either three (Left) or five (Right)]. Dark gray bars represent the summed total
OD observed when dispersal occurred to either three (Left) or five (Right) individual target wells. Final bacterial density produced using either experiment was
not significantly different (as indicated in the figure, two-tailed t test). The volume of medium transferred from the source to the target well is represented by
25 μL and 5 μL. OD was measured at 28 h. SD from four replicates.
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Fig. S5. Fluctuations in growth as an indicator of spread success. (A) Simulated dependence of cell densities on dispersal rate per target patch (α per n) using
our stochastic model (Eqs. S22 and S23). With the circuit ON, decreasing α per n leads to a decrease in mean cell density in each target but an increase in relative
fluctuations in the density. For A and B, initial C = 0.05, t (simulation time) = 28 h. (B) Simulated dependence of the coefficient of variation (CV) in the cell
densities in the target patches. This graph is generated from the data in A. (C) Experimental verification of our modeling predictions in A. For C and D, OD
measured at 28 h from a minimum of six wells. (D) Experimental verification of our modeling predictions in B. This graph is generated from the data in C.

Table S1. A brief summary of theoretical and empirical studies that detail how a strong Allee effect and dispersal interact to determine
spread success and survival

Species Findings Refs.

Dispersal detracts from establishment
Gypsy moth (Lymantria dispar) The Asian gypsy moth, which disperses via flight, has not become

established in North America, despite being observed to have been
briefly present in North America. In contrast, the flightless Eurasian
gypsy moth has spread. This lack of flight has been attributed to
its ability to spread.

(36, 56, 65, 87, 88)

Six-spot burnet moth
(Zygaena filipendulae)

A high dispersal rate was observed when total population density was
low or when plant host density was low, leading to a strong Allee
effect and a reduction in patch occupancy (i.e., patches with
established colonies).

(89)

Glanville fritillary butterfly
(Melitaea cinxia)

An increased dispersal rate at low density decreases the probability of
successfully mating, thus causing a strong Allee effect and increasing
the likelihood of extinction.

(90)

Northern Pacific seastar
(Asterias amurensis)

Estuaries with low retention (i.e., high dispersal due to currents) failed to
achieve a positive growth rate. In contrast, estuaries with high retention
had positive growth rates after population establishment.

(91)

Dispersal of insufficient individuals fails to allow spread
Evergreen bagworm

(Thyridopteryx ephemeraeformis)
Toward their range limit, dispersal limited bagworms exist as temporally

unstable patchy populations. Here the reproductive success is reduced
to nearly 0%.

(92)

Gypsy moth (Lymantria dispar) Nascent colonies of dispersal limited L. dispar cannot seed new colonies
until they have reached a donor threshold. Here the nascent colonies
must supply a sufficient number of emigrants so that the density at the
new colony can surpass CCRIT and become established.

(61)

Wing-dimorphic planthopper
(Delphacodes Scolochloa)

The probability of establishing a colony on a patch was strongly associated
with the number of females in the patch. Note that D. scolochloa is
considered to be dispersal limited.

(93)

Glassy winged sharpshooter
(Homalodisca vitripennis)

The patchy distribution of sharpshooters, consisting of many patches with
low density and few with high density.

(94)
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Table S2. A summary of cooperative species that have an Allee effect due to environmental conditioning

Species Findings Refs.

Alpine marmots (Marmota marmota) Small groups had less efficient thermoregulation during hibernation. (14)
Woodlouse (Porcellio scaber) Group sheltering during periods of water loss allows water retention

and increases fitness.
(96)

Monarch butterflies (Danaus plexippus) Reproductive success of small over-wintering aggregates (i.e., groups of
individuals) is lower than larger aggregates.

(7)

Pale-swallow wort
(Vincetoxicum rossicum)

Secretion of allelopathic (i.e., chemical) compounds suppresses competitor
plant growth. Small groups of plants had lower biomass and produced
less seeds.

(8)

Drosophila melanogaster Pheromone-mediated high-density aggregation of adult larvae on medium
increased the reproductive success of a population by reducing the growth
of competing fungi.

(97)

Sweet potato weevil (Cylas formicarius) Increased mortality of eggs and larvae at low density due to a reduction in
the amount of secreted chemical hampering the ability to of C. formicarius
to feed.

(98)

European spruce bark beetle
(Ips typographus)

Release of aggregating pheromones promotes aggregating on tress, allowing
beetles to overwhelm plant defenses and feed.

(13, 99)

Vibrio cholera Secretion of cholera toxin, which is initiated at a sufficiently high cell density,
is a limiting step during the infection process.

(100)

Staphylococcus aureus Successful infection requires the secretion of several immune system modulating
factors. Secretion requires a minimal density of bacteria.

(15, 18, 101)

Pseudomonas aeruginosa The formation of biofilms can be regulated through quorum-sensing molecules.
Such biofilms have increased antibiotic resistance.

(22, 102)

Myxococcus xanthus A minimum density of cells is required to form a fruiting body structure. (103)

Multiple additional examples can be found elsewhere (10, 15, 33, 95).

Table S3. Parameters used to estimate the magnitude of β and γ and those used in the simplified model

Parameter Description Rate constant Source

Parameters used to estimate β and γ

kkill Bacterial killing rate by CcdB 0.8 h−1 (3)
kd1 Degradation rate constant of CcdA 1.38 h−1 (104)
kd2 Degradation rate constant of CcdB 0.30 h−1 (104)
kd3 Degradation rate constant of CcdA–CcdB complex 0.69 h−1 (71)
kca Expression rate constant of CcdA 1 h−1 Estimated
kI Synthesis rate constant of CcdB 5 x 10−3 μM h−1 Estimated
K CcdB concentration that gives rise to the half

maximal killing rate
5 x10−2 μM Estimated

Parameters used in the simplified model
μ Maximum specific growth rate 0.5 h−1 Estimated from Fig. S1C
kA Synthesis rate constant of AHL 0.25 μM h−1 (105, 106)
kdA Degradation rate constant of AHL 0.01 h−1 (107)
γ Killing rate of CcdB 4 x 10−3 μM h−1 *
β Half maximal killing ability of CcdB 7 x 10−3 [μM] *
τ Time delay of the activation of gene expression by

the LuxR–AHL complex
7 h Estimated from Fig. S1C

Eqs. S10 and S11.
*These values were determined by first estimating the order of magnitude of each parameter using information in “Parameters used to estimate β and γ.” The
parameter value was then fit to our experimental data from Figs. 1C and 2.
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Table S4. A summary of species that disperse in groups

Species Findings Refs.*

Plains vizcacha (Lagostomus maximus) Females and young vizcachas dispersed to new boroughs in groups. (111)
Red-rump tarantula

(Brachypelma vagans)
Juvenile spiders were observed to disperse from the natal borough

in groups.
(112)

White winged choughs
(Corcorax melanorhamphos)

Dispersing individuals form groups to aid in reproductive success. (113)

Arabian babbler (Turdoides squamiceps) Dispersal in groups allowed immigrants to breed successfully in
a new area.

(109)

Several primate species Males were observed to disperse in groups, which may increase each
individual’s competitive ability.

(110)

Brown jays (Cyanocorax morio) Individuals of the same sex tended to disperse in groups, which may
facilitate the entry of the birds into new groups.

(114)

Lions (Panthera leo) Group dispersal of male lions was associated with increased
reproductive success.

(115)

Meerkats (Suricata suricatta) Male meerkats were observed to disperse in groups, which was associated
with higher reproductive success.

(116)

Myxococcus xanthus Swarming on soft surfaces is associated with group dispersal
(i.e., social gliding).

(117)

Escherichia coli Groups of bacteria (aggregates) were observed to disperse from a biofilm. (118)
Multiple bacteria Group dispersal over solid surfaces (i.e., swarming) confers antibiotic resistance. (119)

Multiple additional examples can be found elsewhere (108–110).
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